18,864 research outputs found

    Signature of strong atom-cavity interaction on critical coupling

    Full text link
    We study a critically coupled cavity doped with resonant atoms with metamaterial slabs as mirrors. We show how resonant atom-cavity interaction can lead to a splitting of the critical coupling dip. The results are explained in terms of the frequency and lifetime splitting of the coupled system.Comment: 8 pages, 5 figure

    Bundle formation in parallel aligned polymers with competing interactions

    Full text link
    Aggregation of like-charged polymers is widely observed in biological and soft matter systems. In many systems, bundles are formed when a short-range attraction of diverse physical origin like charge-bridging, hydrogen-bonding or hydrophobic interaction, overcomes the longer- range charge repulsion. In this Letter, we present a general mechanism of bundle formation in these systems as the breaking of the translational invariance in parallel aligned polymers with competing interactions of this type. We derive a criterion for finite-sized bundle formation as well as for macroscopic phase separation (formation of infinite bundles).Comment: accepted for publication in Europhys Let

    Coupling nanomechanical cantilevers to dipolar molecules

    Full text link
    We investigate the coupling of a nanomechanical oscillator in the quantum regime with molecular (electric) dipoles. We find theoretically that the cantilever can produce single-mode squeezing of the center-of-mass motion of an isolated trapped molecule and two-mode squeezing of the phonons of an array of molecules. This work opens up the possibility of manipulating dipolar crystals, which have been recently proposed as quantum memory, and more generally, is indicative of the promise of nanoscale cantilevers for the quantum detection and control of atomic and molecular systems.Comment: 3 figures, 4page

    Formation of ultracold LiRb molecules by photoassociation near the Li (2s 2S1/2) + Rb (5p 2P1/2) asymptote

    Full text link
    We report the production of ultracold 7Li85Rb molecules by photoassociation (PA) below the Li (2s 2S1/2) + Rb (5p 2P1/2) asymptote. We perform PA spectroscopy in a dual-species 7Li-85Rb magneto-optical trap (MOT) and detect the PA resonances using trap loss spectroscopy. We observe several strong PA resonances corresponding to the last few bound states, assign the lines and derive the long range C6 dispersion coefficients for the Li (2s 2S1/2) + Rb (5p 2P1/2) asymptote. We also report an excited-state molecule formation rate (P_LiRb) of ~10^7 s^-1 and a PA rate coefficient (K_PA) of ~4x10^-11 cm^3/s, which are both among the highest observed for heteronuclear bi-alkali molecules. These suggest that PA is a promising route for the creation of ultracold ground state LiRb molecules.Comment: 6 page

    The Large Magellanic Cloud: A power spectral analysis of Spitzer images

    Full text link
    We present a power spectral analysis of Spitzer images of the Large Magellanic Cloud. The power spectra of the FIR emission show two different power laws. At larger scales (kpc) the slope is ~ -1.6, while at smaller ones (tens to few hundreds of parsecs) the slope is steeper, with a value ~ -2.9. The break occurs at a scale around 100-200 pc. We interpret this break as the scale height of the dust disk of the LMC. We perform high resolution simulations with and without stellar feedback. Our AMR hydrodynamic simulations of model galaxies using the LMC mass and rotation curve, confirm that they have similar two-component power-laws for projected density and that the break does indeed occur at the disk thickness. Power spectral analysis of velocities betrays a single power law for in-plane components. The vertical component of the velocity shows a flat behavior for large structures and a power law similar to the in-plane velocities at small scales. The motions are highly anisotropic at large scales, with in-plane velocities being much more important than vertical ones. In contrast, at small scales, the motions become more isotropic.Comment: 8 pages, 4 figures, talk presented at "Galaxies and their Masks", celebrating Ken Freeman's 70-th birthday, Sossusvlei, Namibia, April 2010. To be published by Springer, New York, editors D.L. Block, K.C. Freeman, & I. Puerar
    • …
    corecore