2,039 research outputs found

    What Accounts for the Decline in Crime?

    Get PDF
    In this paper we analyze recent trends in aggregate property crime rates in the United States. We propose a dynamic equilibrium model which guides our quantitative investigation of the major determinants of observed patterns of crime. Our main findings can be summarized as follows. First, the model is capable of reproducing the drop in crime between 1980 and 1996. Second, the most important factors that account for the observed decline in property crime are the higher apprehension probability, the stronger economy, and the aging of the population. Third, the effect of unemployment on crime is negligible. Fourth, the increased inequality prevented an even larger decline in crime. Overall, our analysis can account for the behavior of the time series of property crime rates over the past quarter century.PROPERTY CRIME; INEQUALITY; DYNAMICS

    First Scarab Host for \u3ci\u3eStrongygaster Triangulifer\u3c/i\u3e (Diptera: Tachinidae): the Dung Beetle, \u3ci\u3eAphodius Fimetarius\u3c/i\u3e (Coleoptera: Scarabaeidae)

    Get PDF
    We report Strongygaster (=Hyalomyodes ) triangulifer as a solitary primary parasite of the adult introduced dung beetle, Aphodius fimetarius. This is the first record of this tachinid fly parastizing scarab

    Entanglement-enhanced optical gyroscope

    Full text link
    Fiber optic gyroscopes (FOG) based on the Sagnac effect are a valuable tool in sensing and navigation and enable accurate measurements in applications ranging from spacecraft and aircraft to self-driving vehicles such as autonomous cars. As with any classical optical sensors, the ultimate performance of these devices is bounded by the standard quantum limit (SQL). Quantum-enhanced interferometry allows us to overcome this limit using non-classical states of light. Here, we report on an entangled-photon gyroscope that uses path-entangled NOON-states (N=2) to provide phase supersensitivity beyond the standard-quantum-limit

    On the Search for Quasar Light Echoes

    Full text link
    The UV radiation from a quasar leaves a characteristic pattern in the distribution of ionized hydrogen throughout the surrounding space. This pattern or light echo propagates through the intergalactic medium at the speed of light, and can be observed by its imprint on the Ly-alpha forest spectra of background sources. As the echo persists after the quasar has switched off, it offers the possibility of searching for dead quasars, and constraining their luminosities and lifetimes. We outline a technique to search for and characterize these light echoes. To test the method, we create artificial Ly-alpha forest spectra from cosmological simulations at z=3, apply light echoes and search for them. We show how the simulations can also be used to quantify the significance level of any detection. We find that light echoes from the brightest quasars could be found in observational data. With absorption line spectra of 100 redshift z~3-3.5 quasars or galaxies in a 1 square degree area, we expect that ~10 echoes from quasars with B band luminosities L_B=3x10^45 ergs/s exist that could be found at 95% confidence, assuming a quasar lifetime of ~10^7 yr. Even a null result from such a search would have interesting implications for our understanding of quasar luminosities and lifetimes.Comment: 9 pages, 7 figures, ApJ in pres

    Ionizing radiation fluctuations and large-scale structure in the Lyman-alpha forest

    Full text link
    We investigate the large-scale inhomogeneities of the hydrogen ionizing radiation field in the Universe at redshift z=3. Using a raytracing algorithm, we simulate a model in which quasars are the dominant sources of radiation. We make use of large scale N-body simulations of a LambdaCDM universe, and include such effects as finite quasar lifetimes and output on the lightcone, which affects the shape of quasar light echoes. We create Lya forest spectra that would be generated in the presence of such a fluctuating radiation field, finding that the power spectrum of the Lya forest can be suppressed by as much as 15 % for modes with k=0.05-1 Mpc/h. This relatively small effect may have consequences for high precision measurements of the Lya power spectrum on larger scales than have yet been published. We also investigate another radiation field probe, the cross-correlation of quasar positions and the Lya forest. For both quasar lifetimes which we simulate (10^7 yr and 10^8 yr), we expect to see a strong decrease in the Lya absorption close to other quasars (the ``foreground'' proximity effect). We then use data from the Sloan Digital Sky Survey First Data Release to make an observational determination of this statistic. We find no sign of our predicted lack of absorption, but instead increased absorption close to quasars. If the bursts of radiation from quasars last on average < 10^6 yr, then we would not expect to be able to see the foreground effect. However, the strength of the absorption itself seems to be indicative of rare objects, and hence much longer total times of emission per quasar. Variability of quasars in bursts with timescales > 10^4yr and < 10^6 yr could reconcile these two facts.Comment: Submitted to ApJ, 21 pages, 17 postscript figures, emulateapj.st

    O Lord God

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-me/1669/thumbnail.jp
    corecore