34 research outputs found

    The high-pressure phase of boron, {\gamma}-B28: disputes and conclusions of 5 years after discovery

    Full text link
    {\gamma}-B28 is a recently established high-pressure phase of boron. Its structure consists of icosahedral B12 clusters and B2 dumbbells in a NaCl-type arrangement (B2){\delta}+(B12){\delta}- and displays a significant charge transfer {\delta}~0.5- 0.6. The discovery of this phase proved essential for the understanding and construction of the phase diagram of boron. {\gamma}-B28 was first experimentally obtained as a pure boron allotrope in early 2004 and its structure was discovered in 2006. This paper reviews recent results and in particular deals with the contentious issues related to the equation of state, hardness, putative isostructural phase transformation at ~40 GPa, and debates on the nature of chemical bonding in this phase. Our analysis confirms that (a) calculations based on density functional theory give an accurate description of its equation of state, (b) the reported isostructural phase transformation in {\gamma}-B28 is an artifact rather than a fact, (c) the best estimate of hardness of this phase is 50 GPa, (d) chemical bonding in this phase has a significant degree of ionicity. Apart from presenting an overview of previous results within a consistent view grounded in experiment, thermodynamics and quantum mechanics, we present new results on Bader charges in {\gamma}-B28 using different levels of quantum-mechanical theory (GGA, exact exchange, and HSE06 hybrid functional), and show that the earlier conclusion about significant degree of partial ionicity in this phase is very robust

    Characterizing CA(2) and CA(6) using elnes

    No full text
    Calcium aluminates, compounds in the CaO-Al2O3 phase system, are used in high-temperature cements and refractory oxides and have wide range of potential technological applications due to their interesting optical, electrical, thermal, and mechanical properties. They are used in both crystalline and glassy form; the glass is an isotropic material while the crystalline materials may be highly anisotropic. This paper will consider two particular crystalline materials, CA(2) and CA(6), but the results should be applicable to all calcium aluminates. Although CA(2) and CA(6) crystals contain the same chemical species, Ca, Al, and O, the coordination and local environments of these species are different in the two structures and hence they show very different energy-loss near-edge structures (ELNES) when examined by electron energy-loss spectroscopy (EELS) in the TEM. The data obtained using ELNES can effectively provide a fingerprint for each compound and a map for their electronic structure. Once such fingerprints are obtained, they can be used to identify nano-sized particles/grains or material at interfaces and grain boundaries. In the present study, the local symmetry fingerprints for CA(2) and CA(6) structures are reported combining experimental spectra with electronic-structure calculations that allow the different features in the spectra to be interpreted. Al-L-2,L-3 and O-K edge core-loss spectra from CA(2) and CA(6) were measured experimentally using electron energy-loss spectroscopy in a monochromated scanning transmission electron microscope. The near-edge structures were calculated for the different phases using the orthogonalized linear combination of atomic-orbitals method, and took account of core-hole interactions. It is shown that CA(2) and CA(6) structures exhibit distinctive experimental ELNES fingerprints so that these two phases can be separately identified even when present in small volumes

    The electronic structure and chemical bonding of vitamin

    No full text
    The electronic structure and chemical bonding of vitamin \chem{B_{12}} (cyanocobalamin) and \chem{B_{12}}-derivative (methylcobalamin) are studied by means of X-ray emission (XES) and photoelectron (XPS) spectroscopy. The obtained results are compared with ab initio electronic structure calculations using the orthogonalized linear combination of the atomic orbital method (OLCAO). We show that the chemical bonding in vitamin \chem{B_{12}} is characterized by the strong \chem{Co}-\chem{C} bond and relatively weak axial \chem{Co}-\chem{N} bond. It is further confirmed that the \chem{Co}-\chem{C} bond in cyanocobalamin is stronger than that of methylcobalamin resulting in their different biological activity

    Chemical Bonding Analysis of AlN Polytypes by ELNES

    No full text
    corecore