916 research outputs found
Equilibration of objective observables in a dynamical model of quantum measurements
The challenge of understanding quantum measurement persists as a fundamental
issue in modern physics. Particularly, the abrupt and energy-non-conserving
collapse of the wave function appears to contradict classical thermodynamic
laws. The contradiction can be resolved by considering measurement itself to be
an entropy-increasing process, driven by the second law of thermodynamics. This
proposal, dubbed the Measurement-Equilibration Hypothesis, builds on the
Quantum Darwinism framework derived to explain the emergence of the classical
world. Measurement outcomes thus emerge objectively from unitary dynamics via
closed-system equilibration. Working within this framework, we construct the
set of \textit{`objectifying observables'} that best encode the measurement
statistics of a system in an objective manner, and establish a measurement
error bound to quantify the probability an observer will obtain an incorrect
measurement outcome. Using this error bound, we show that the objectifying
observables readily equilibrate on average under the set of Hamiltonians which
preserve the outcome statistics on the measured system. Using a random matrix
model for this set, we numerically determine the measurement error bound,
finding that the error only approaches zero with increasing environment size
when the environment is coarse-grained into so-called observer systems. This
indicates the necessity of coarse-graining an environment for the emergence of
objective measurement outcomes.Comment: 12 + 8 pages, 5 figure
Five-State Study of ACA Marketplace Competition
The health insurance marketplaces created by the Affordable Care Act (ACA) were intended to broaden health insurance coverage by making it relatively easy for the uninsured, armed with income-related federal subsidies, to choose health plans that met their needs from an array of competing options. The further hope was that competition among health plans on the exchanges would lead to lower costs and higher value for consumers, because inefficient, low-value plans would lose out in the competitive market place. This study sought to understand the diverse experience in five states under the ACA in order to gain insights for improving competition in the private health insurance industry and the implementation of the ACA.In spring 2016, the insurance marketplaces had been operating for nearly three full years. There were numerous press stories of plans' decisions to enter or leave selected states or market areas within states and to narrow provider networks by including fewer choices among hospitals, medical specialists, and other providers. There were also beginning to be stories of insurer requests for significant premium increases. However, there was no clear understanding of how common these practices were, nor how and why practices differed across carriers, markets, and state regulatory settings.This project used the ACA Implementation Research Network to conduct field research in California, Michigan, Florida, North Carolina, and Texas. In each state, expert field researchers engaged directly with marketplace stakeholders, including insurance carriers, provider groups, state regulators, and consumer engagement organizations, to identify and understand their various decisions. This focus included an effort to understand why carriers choose to enter or exit markets and the barriers they faced, how provider networks were built, and how state regulatory decisions affected decision-making. Ultimately, it sought to find where and why certain markets are successful and competitive and how less competitive markets might be improved.The study of five states was not intended to provide statistically meaningful generalizations about the functioning of the marketplace exchanges. Rather, it was intended to accomplish two other objectives. First, the study was designed to generate hypotheses about the development and evolution of the exchanges that might be tested with "harder" data from all the exchanges. Second, it sought to describe the potentially idiosyncratic nature of the marketplaces in each of the five states. Political and economic circumstances may differ substantially across markets. Policymakers and market participants need to appreciate the nuances of different local settings if programs are to be successful. What works in Michigan may not work in Texas and vice versa. Field research of this sort can give researchers and policymakers insight into how idiosyncratic local factors matter in practice.In brief, our five states had four years of experience in the open enrollment periods from 2014 through 2017. The states array themselves in a continuum of apparent success in enhancing and maintaining competition among insurers. California and Michigan appear to have had success in nurturing insurer competition, in at least the urban areas of their states. Florida, North Carolina, and Texas were less successful. This divergence is recent, however. As recently as the 2015 and 2016 open enrollment periods, all of the states had what appeared to be promising, if not always robust, insurance competition. Large changes occurred in the run-up to the 2017 open enrollment period
Toughening and asymmetry in peeling of heterogeneous adhesives
The effective adhesive properties of heterogeneous thin films are
characterized through a combined experimental and theoretical investigation. By
bridging scales, we show how variations of elastic or adhesive properties at
the microscale can significantly affect the effective peeling behavior of the
adhesive at the macroscale. Our study reveals three elementary mechanisms in
heterogeneous systems involving front propagation: (i) patterning the elastic
bending stiffness of the film produces fluctuations of the driving force
resulting in dramatically enhanced resistance to peeling; (ii) optimized
arrangements of pinning sites with large adhesion energy are shown to control
the effective system resistance, allowing the design of highly anisotropic and
asymmetric adhesives; (iii) heterogeneities of both types result in front
motion instabilities producing sudden energy releases that increase the overall
adhesion energy. These findings open potentially new avenues for the design of
thin films with improved adhesion properties, and motivate new investigation of
other phenomena involving front propagation.Comment: Physical Review Letters (2012)
Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth
We explore the role of Mo in Fe:Mo nanocatalyst thermodynamics for
low-temperature chemical vapor deposition growth of single walled carbon
nanotubes (SWCNTs). By using the size-pressure approximation and ab initio
modeling, we prove that for both Fe-rich (~80% Fe or more) and Mo-rich (~50% Mo
or more) Fe:Mo clusters, the presence of carbon in the cluster causes
nucleation of Mo2C. This enhances the activity of the particle since it
releases Fe, which is initially bound in a stable Fe:Mo phase, so that it can
catalyze SWCNT growth. Furthermore, the presence of small concentrations of Mo
reduce the lower size limit of low-temperature steady-state growth from ~0.58nm
for pure Fe particles to ~0.52nm. Our ab initio-thermodynamic modeling explains
experimental results and establishes a new direction to search for better
catalysts.Comment: 7 pages, 3 figures. submitte
Chebyshev matrix product state approach for spectral functions
We show that recursively generated Chebyshev expansions offer numerically
efficient representations for calculating zero-temperature spectral functions
of one-dimensional lattice models using matrix product state (MPS) methods. The
main features of this Chebychev matrix product state (CheMPS) approach are: (i)
it achieves uniform resolution over the spectral function's entire spectral
width; (ii) it can exploit the fact that the latter can be much smaller than
the model's many-body bandwidth; (iii) it offers a well-controlled broadening
scheme; (iv) it is based on a succession of Chebychev vectors |t_n>, (v) whose
entanglement entropies were found to remain bounded with increasing recursion
order n for all cases analyzed here; (vi) it distributes the total entanglement
entropy that accumulates with increasing n over the set of Chebyshev vectors
|t_n>. We present zero-temperature CheMPS results for the structure factor of
spin-1/2 antiferromagnetic Heisenberg chains and perform a detailed finite-size
analysis. Making comparisons to three benchmark methods, we find that CheMPS
(1) yields results comparable in quality to those of correction vector DMRG, at
dramatically reduced numerical cost; (2) agrees well with Bethe Ansatz results
for an infinite system, within the limitations expected for numerics on finite
systems; (3) can also be applied in the time domain, where it has potential to
serve as a viable alternative to time-dependent DMRG (in particular at finite
temperatures). Finally, we present a detailed error analysis of CheMPS for the
case of the noninteracting resonant level model.Comment: 22 pages, 13 figure
Rubber Impact on 3D Textile Composites
A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools
Multiphoton radiative recombination of electron assisted by laser field
In the presence of an intensive laser field the radiative recombination of
the continuum electron into an atomic bound state generally is accompanied by
absorption or emission of several laser quanta. The spectrum of emitted photons
represents an equidistant pattern with the spacing equal to the laser
frequency. The distribution of intensities in this spectrum is studied
employing the Keldysh-type approximation, i.e. neglecting interaction of the
impact electron with the atomic core in the initial continuum state. Within the
adiabatic approximation the scale of emitted photon frequencies is subdivided
into classically allowed and classically forbidden domains. The highest
intensities correspond to emission frequencies close to the edges of
classically allowed domain. The total cross section of electron recombination
summed over all emitted photon channels exhibits negligible dependence on the
laser field intensity.Comment: 14 pages, 5 figures (Figs.2-5 have "a" and "b" parts), Phys.Rev.A
accepted for publication. Fig.2b is presented correctl
Reaction forces of laminated glass windows subject to blast loads
Several blast trials on laminated glass windows have been performed in the past, using both full field 3D Digital Image Correlation and strain gauges located on the supporting structure to collect information on the glass pane behaviour. The data obtained during three blast experiments were employed to calculate reaction forces throughout the perimeter supports both before and after the fracture of the glass layers. The pre-crack experimental data were combined with finite element modelling results to achieve this, whilst solely experimental results were employed for post-cracked reactions. The results for the three blast experiments were compared to identify similarities in their behaviour. It is intended that the results can be used to improve the existing spring–mass systems used for the design of blast resistant windows
DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway
Stabilization of mutant p53 (mutp53) in tumours greatly contributes to malignant progression. However, little is known about the underlying mechanisms and therapeutic approaches to destabilize mutp53. Here, through high-throughput screening we identify statins, cholesterol-lowering drugs, as degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. Statins preferentially suppress mutp53-expressing cancer cell growth. Specific reduction of mevalonate-5-phosphate by statins or mevalonate kinase knockdown induces CHIP ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutp53 by impairing interaction of mutp53 with DNAJA1, a Hsp40 family member. Knockdown of DNAJA1 also induces CHIP-mediated mutp53 degradation, while its overexpression antagonizes statin-induced mutp53 degradation. Our study reveals that DNAJA1 controls the fate of misfolded mutp53, provides insights into potential strategies to deplete mutp53 through the mevalonate pathway–DNAJA1 axis, and highlights the significance of p53 status in impacting statins’ efficacy on cancer therapy
- …