916 research outputs found

    Equilibration of objective observables in a dynamical model of quantum measurements

    Full text link
    The challenge of understanding quantum measurement persists as a fundamental issue in modern physics. Particularly, the abrupt and energy-non-conserving collapse of the wave function appears to contradict classical thermodynamic laws. The contradiction can be resolved by considering measurement itself to be an entropy-increasing process, driven by the second law of thermodynamics. This proposal, dubbed the Measurement-Equilibration Hypothesis, builds on the Quantum Darwinism framework derived to explain the emergence of the classical world. Measurement outcomes thus emerge objectively from unitary dynamics via closed-system equilibration. Working within this framework, we construct the set of \textit{`objectifying observables'} that best encode the measurement statistics of a system in an objective manner, and establish a measurement error bound to quantify the probability an observer will obtain an incorrect measurement outcome. Using this error bound, we show that the objectifying observables readily equilibrate on average under the set of Hamiltonians which preserve the outcome statistics on the measured system. Using a random matrix model for this set, we numerically determine the measurement error bound, finding that the error only approaches zero with increasing environment size when the environment is coarse-grained into so-called observer systems. This indicates the necessity of coarse-graining an environment for the emergence of objective measurement outcomes.Comment: 12 + 8 pages, 5 figure

    Five-State Study of ACA Marketplace Competition

    Get PDF
    The health insurance marketplaces created by the Affordable Care Act (ACA) were intended to broaden health insurance coverage by making it relatively easy for the uninsured, armed with income-related federal subsidies, to choose health plans that met their needs from an array of competing options. The further hope was that competition among health plans on the exchanges would lead to lower costs and higher value for consumers, because inefficient, low-value plans would lose out in the competitive market place. This study sought to understand the diverse experience in five states under the ACA in order to gain insights for improving competition in the private health insurance industry and the implementation of the ACA.In spring 2016, the insurance marketplaces had been operating for nearly three full years. There were numerous press stories of plans' decisions to enter or leave selected states or market areas within states and to narrow provider networks by including fewer choices among hospitals, medical specialists, and other providers. There were also beginning to be stories of insurer requests for significant premium increases. However, there was no clear understanding of how common these practices were, nor how and why practices differed across carriers, markets, and state regulatory settings.This project used the ACA Implementation Research Network to conduct field research in California, Michigan, Florida, North Carolina, and Texas. In each state, expert field researchers engaged directly with marketplace stakeholders, including insurance carriers, provider groups, state regulators, and consumer engagement organizations, to identify and understand their various decisions. This focus included an effort to understand why carriers choose to enter or exit markets and the barriers they faced, how provider networks were built, and how state regulatory decisions affected decision-making. Ultimately, it sought to find where and why certain markets are successful and competitive and how less competitive markets might be improved.The study of five states was not intended to provide statistically meaningful generalizations about the functioning of the marketplace exchanges. Rather, it was intended to accomplish two other objectives. First, the study was designed to generate hypotheses about the development and evolution of the exchanges that might be tested with "harder" data from all the exchanges. Second, it sought to describe the potentially idiosyncratic nature of the marketplaces in each of the five states. Political and economic circumstances may differ substantially across markets. Policymakers and market participants need to appreciate the nuances of different local settings if programs are to be successful. What works in Michigan may not work in Texas and vice versa. Field research of this sort can give researchers and policymakers insight into how idiosyncratic local factors matter in practice.In brief, our five states had four years of experience in the open enrollment periods from 2014 through 2017. The states array themselves in a continuum of apparent success in enhancing and maintaining competition among insurers. California and Michigan appear to have had success in nurturing insurer competition, in at least the urban areas of their states. Florida, North Carolina, and Texas were less successful. This divergence is recent, however. As recently as the 2015 and 2016 open enrollment periods, all of the states had what appeared to be promising, if not always robust, insurance competition. Large changes occurred in the run-up to the 2017 open enrollment period

    Toughening and asymmetry in peeling of heterogeneous adhesives

    Get PDF
    The effective adhesive properties of heterogeneous thin films are characterized through a combined experimental and theoretical investigation. By bridging scales, we show how variations of elastic or adhesive properties at the microscale can significantly affect the effective peeling behavior of the adhesive at the macroscale. Our study reveals three elementary mechanisms in heterogeneous systems involving front propagation: (i) patterning the elastic bending stiffness of the film produces fluctuations of the driving force resulting in dramatically enhanced resistance to peeling; (ii) optimized arrangements of pinning sites with large adhesion energy are shown to control the effective system resistance, allowing the design of highly anisotropic and asymmetric adhesives; (iii) heterogeneities of both types result in front motion instabilities producing sudden energy releases that increase the overall adhesion energy. These findings open potentially new avenues for the design of thin films with improved adhesion properties, and motivate new investigation of other phenomena involving front propagation.Comment: Physical Review Letters (2012)

    Influence of Mo on the Fe:Mo:C nano-catalyst thermodynamics for single-walled carbon nanotube growth

    Full text link
    We explore the role of Mo in Fe:Mo nanocatalyst thermodynamics for low-temperature chemical vapor deposition growth of single walled carbon nanotubes (SWCNTs). By using the size-pressure approximation and ab initio modeling, we prove that for both Fe-rich (~80% Fe or more) and Mo-rich (~50% Mo or more) Fe:Mo clusters, the presence of carbon in the cluster causes nucleation of Mo2C. This enhances the activity of the particle since it releases Fe, which is initially bound in a stable Fe:Mo phase, so that it can catalyze SWCNT growth. Furthermore, the presence of small concentrations of Mo reduce the lower size limit of low-temperature steady-state growth from ~0.58nm for pure Fe particles to ~0.52nm. Our ab initio-thermodynamic modeling explains experimental results and establishes a new direction to search for better catalysts.Comment: 7 pages, 3 figures. submitte

    Chebyshev matrix product state approach for spectral functions

    Get PDF
    We show that recursively generated Chebyshev expansions offer numerically efficient representations for calculating zero-temperature spectral functions of one-dimensional lattice models using matrix product state (MPS) methods. The main features of this Chebychev matrix product state (CheMPS) approach are: (i) it achieves uniform resolution over the spectral function's entire spectral width; (ii) it can exploit the fact that the latter can be much smaller than the model's many-body bandwidth; (iii) it offers a well-controlled broadening scheme; (iv) it is based on a succession of Chebychev vectors |t_n>, (v) whose entanglement entropies were found to remain bounded with increasing recursion order n for all cases analyzed here; (vi) it distributes the total entanglement entropy that accumulates with increasing n over the set of Chebyshev vectors |t_n>. We present zero-temperature CheMPS results for the structure factor of spin-1/2 antiferromagnetic Heisenberg chains and perform a detailed finite-size analysis. Making comparisons to three benchmark methods, we find that CheMPS (1) yields results comparable in quality to those of correction vector DMRG, at dramatically reduced numerical cost; (2) agrees well with Bethe Ansatz results for an infinite system, within the limitations expected for numerics on finite systems; (3) can also be applied in the time domain, where it has potential to serve as a viable alternative to time-dependent DMRG (in particular at finite temperatures). Finally, we present a detailed error analysis of CheMPS for the case of the noninteracting resonant level model.Comment: 22 pages, 13 figure

    Rubber Impact on 3D Textile Composites

    Get PDF
    A low velocity impact study of aircraft tire rubber on 3D textile-reinforced composite plates was performed experimentally and numerically. In contrast to regular unidirectional composite laminates, no delaminations occur in such a 3D textile composite. Yarn decohesions, matrix cracks and yarn ruptures have been identified as the major damage mechanisms under impact load. An increase in the number of 3D warp yarns is proposed to improve the impact damage resistance. The characteristic of a rubber impact is the high amount of elastic energy stored in the impactor during impact, which was more than 90% of the initial kinetic energy. This large geometrical deformation of the rubber during impact leads to a less localised loading of the target structure and poses great challenges for the numerical modelling. A hyperelastic Mooney-Rivlin constitutive law was used in Abaqus/Explicit based on a step-by-step validation with static rubber compression tests and low velocity impact tests on aluminium plates. Simulation models of the textile weave were developed on the meso- and macro-scale. The final correlation between impact simulation results on 3D textile-reinforced composite plates and impact test data was promising, highlighting the potential of such numerical simulation tools

    Multiphoton radiative recombination of electron assisted by laser field

    Get PDF
    In the presence of an intensive laser field the radiative recombination of the continuum electron into an atomic bound state generally is accompanied by absorption or emission of several laser quanta. The spectrum of emitted photons represents an equidistant pattern with the spacing equal to the laser frequency. The distribution of intensities in this spectrum is studied employing the Keldysh-type approximation, i.e. neglecting interaction of the impact electron with the atomic core in the initial continuum state. Within the adiabatic approximation the scale of emitted photon frequencies is subdivided into classically allowed and classically forbidden domains. The highest intensities correspond to emission frequencies close to the edges of classically allowed domain. The total cross section of electron recombination summed over all emitted photon channels exhibits negligible dependence on the laser field intensity.Comment: 14 pages, 5 figures (Figs.2-5 have "a" and "b" parts), Phys.Rev.A accepted for publication. Fig.2b is presented correctl

    Reaction forces of laminated glass windows subject to blast loads

    Get PDF
    Several blast trials on laminated glass windows have been performed in the past, using both full field 3D Digital Image Correlation and strain gauges located on the supporting structure to collect information on the glass pane behaviour. The data obtained during three blast experiments were employed to calculate reaction forces throughout the perimeter supports both before and after the fracture of the glass layers. The pre-crack experimental data were combined with finite element modelling results to achieve this, whilst solely experimental results were employed for post-cracked reactions. The results for the three blast experiments were compared to identify similarities in their behaviour. It is intended that the results can be used to improve the existing spring–mass systems used for the design of blast resistant windows

    DNAJA1 controls the fate of misfolded mutant p53 through the mevalonate pathway

    Get PDF
    Stabilization of mutant p53 (mutp53) in tumours greatly contributes to malignant progression. However, little is known about the underlying mechanisms and therapeutic approaches to destabilize mutp53. Here, through high-throughput screening we identify statins, cholesterol-lowering drugs, as degradation inducers for conformational or misfolded p53 mutants with minimal effects on wild-type p53 (wtp53) and DNA contact mutants. Statins preferentially suppress mutp53-expressing cancer cell growth. Specific reduction of mevalonate-5-phosphate by statins or mevalonate kinase knockdown induces CHIP ubiquitin ligase-mediated nuclear export, ubiquitylation, and degradation of mutp53 by impairing interaction of mutp53 with DNAJA1, a Hsp40 family member. Knockdown of DNAJA1 also induces CHIP-mediated mutp53 degradation, while its overexpression antagonizes statin-induced mutp53 degradation. Our study reveals that DNAJA1 controls the fate of misfolded mutp53, provides insights into potential strategies to deplete mutp53 through the mevalonate pathway–DNAJA1 axis, and highlights the significance of p53 status in impacting statins’ efficacy on cancer therapy
    • …
    corecore