11,800 research outputs found
Shapes and Dynamics from the Time-Dependent Mean Field
Explaining observed properties in terms of underlying shape degrees of
freedom is a well--established prism with which to understand atomic nuclei.
Self--consistent mean--field models provide one tool to understand nuclear
shapes, and their link to other nuclear properties and observables. We present
examples of how the time--dependent extension of the mean--field approach can
be used in particular to shed light on nuclear shape properties, particularly
looking at the giant resonances built on deformed nuclear ground states, and at
dynamics in highly-deformed fission isomers. Example calculations are shown of
Si in the first case, and Pu in the latter case.Comment: 9 pages, 5 figures, to appear in proceedings of International
Workshop "Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects"
(SDANCA-15), 8-10 October 2015, Sofia, Bulgari
Cause of the charge radius isotope shift at the \emph{N}=126 shell gap
We discuss the mechanism causing the `kink' in the charge radius isotope
shift at the N=126 shell closure. The occupation of the 1 neutron
orbital is the decisive factor for reproducing the experimentally observed
kink. We investigate whether this orbital is occupied or not by different
Skyrme effective interactions as neutrons are added above the shell closure.
Our results demonstrate that several factors can cause an appreciable
occupation of the 1 neutron orbital, including the magnitude of the
spin-orbit field, and the isoscalar effective mass of the Skyrme interaction.
The symmetry energy of the effective interaction has little influence upon its
ability to reproduce the kink.Comment: 4 pages, 4 figures, to be submitted to proceedings of INPC 201
Correlations within the Non-Equilibrium Green's Function Method
Non-equilibrium Green's Function (NGF) method is a powerful tool for studying
the evolution of quantum many-body systems. Different types of correlations can
be systematically incorporated within the formalism. The time evolution of the
single-particle Green's functions is described in terms of the Kadanoff-Baym
equations. The current work initially focuses on introducing the correlations
within infinite nuclear matter in one dimension and then in a finite system in
the NGF approach. Starting from the harmonic oscillator Hamiltonian, by
switching on adiabatically the mean-field and correlations simultaneously, a
correlated state with ground-state characteristics is arrived at within the NGF
method. Furthermore the use of cooling to for improving the adiabatic switching
is explored.Comment: Contribution to Proc. 5th Conference on Nuclei and Mesoscopic
Physics, E Lansing, 6-10 March 2017; 9 pages, 8 figure
Moving frames for cotangent bundles
Cartan's moving frames method is a standard tool in riemannian geometry. We
set up the machinery for applying moving frames to cotangent bundles and its
sub-bundles defined by non-holonomic constraints.Comment: 13 pages, to appear in Rep. Math. Phy
Ultracold atoms at unitarity within quantum Monte Carlo
Variational and diffusion quantum Monte Carlo (VMC and DMC) calculations of
the properties of the zero-temperature fermionic gas at unitarity are reported.
The ratio of the energy of the interacting to the non-interacting gas for a
system of 128 particles is calculated to be 0.4517(3) in VMC and 0.4339(1) in
the more accurate DMC method. The spherically-averaged pair-correlation
functions, momentum densities, and one-body density matrices are very similar
in VMC and DMC, but the two-body density matrices and condensate fractions show
some differences. Our best estimate of the condensate fraction of 0.51 is a
little smaller than values from other quantum Monte Carlo calculations
Multi-layer model for the web graph
This paper studies stochastic graph models of the WebGraph. We present a new model that describes the WebGraph as an ensemble of different regions generated by independent stochastic processes (in the spirit of a recent paper by Dill et al. [VLDB 2001]). Models such as the Copying Model [17] and Evolving Networks Model [3] are simulated and compared on several relevant measures such as degree and clique distribution
- …