72 research outputs found
Multi-step ultraviolet index forecasting using long short-term memory networks
The ultraviolet index is an international standard metric for measuring the strength of the ultraviolet radiation reaching Earth’s surface at a particular time, at a particular place. Major health problems may arise from an overexposure to such radiation, including skin cancer or premature ageing, just to name a few. Hence, the goal of this work is to make use of Deep Learning models to forecast the ultraviolet index at a certain area for future timesteps. With the problem framed as a time series one, candidate models are based on Recurring Neural Networks, a particular class of Artificial Neural Networks that have been shown to produce promising results when handling time series. In particular, candidate models implement Long Short-Term Memory networks, with the models’ input ranging from uni to multi-variate. The used dataset was collected by the authors of this work. On the other hand, the models’ output follows a recursive multi-step approach to forecast several future timesteps. The obtained results strengthen the use of Long Short-Term Memory networks to handle time series problems, with the best candidate model achieving high performance and accuracy for ultraviolet index forecasting.This work has been supported by FCT - Fundação para a Ciência e a Tecnologia within the R&D Units project scope UIDB/00319/2020 and DSAIPA/AI/0099/2019. The work of Bruno Fernandes is also supported by a Portuguese doctoral grant, SFRH/BD/130125/2017, issued by FCT in Portugal
New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation
(abridged) The heating mechanism at high densities during M dwarf flares is
poorly understood. Spectra of M dwarf flares in the optical and
near-ultraviolet wavelength regimes have revealed three continuum components
during the impulsive phase: 1) an energetically dominant blackbody component
with a color temperature of T 10,000 K in the blue-optical, 2) a smaller
amount of Balmer continuum emission in the near-ultraviolet at lambda 3646
Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer
lines. These properties are not reproduced by models that employ a typical
"solar-type" flare heating level in nonthermal electrons, and therefore our
understanding of these spectra is limited to a phenomenological interpretation.
We present a new 1D radiative-hydrodynamic model of an M dwarf flare from
precipitating nonthermal electrons with a large energy flux of erg
cm s. The simulation produces bright continuum emission from a
dense, hot chromospheric condensation. For the first time, the observed color
temperature and Balmer jump ratio are produced self-consistently in a
radiative-hydrodynamic flare model. We find that a T 10,000 K
blackbody-like continuum component and a small Balmer jump ratio result from
optically thick Balmer and Paschen recombination radiation, and thus the
properties of the flux spectrum are caused by blue light escaping over a larger
physical depth range compared to red and near-ultraviolet light. To model the
near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer
lines, we include the extra Balmer continuum opacity from Landau-Zener
transitions that result from merged, high order energy levels of hydrogen in a
dense, partially ionized atmosphere. This reveals a new diagnostic of ambient
charge density in the densest regions of the atmosphere that are heated during
dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar
Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015):
updated to include comments by Guest Editor. The final publication is
available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-
Aerosol Characteristics at a High Altitude Location in Central Himalayas: Optical Properties and Radiative Forcing
Collocated measurements of the mass concentrations of aerosol black carbon
(BC) and composite aerosols near the surface were carried out along with
spectral aerosol optical depths (AODs) from a high altitude station, Manora
Peak in Central Himalayas, during a comprehensive aerosol field campaign in
December 2004. Despite being a pristine location in the Shivalik Ranges of
Central Himalayas, and having a monthly mean AOD (at 500 nm) of 0.059
0.033 (typical to this site), total suspended particulate (TSP) concentration
was in the range 15 - 40 micro g m^(-3) (mean value 27.1 8.3 micro g
m^(-3)). Interestingly, aerosol BC had a mean concentration of 1.36 0.99
micro g m^(-3), contributed to ~5.0 1.3 % to the composite aerosol mass.
This large abundance of BC is found to have linkages to the human activities in
the adjoining valley and to the boundary layer dynamics. Consequently, the
inferred single scattering albedo lies in the range of 0.87 to 0.94 (mean value
0.90 0.03), indicating significant aerosol absorption. The estimated
aerosol radiative forcing was as low as 4.2 W m^(-2) at the surface, +0.7 W
m^(-2) at the top of the atmosphere, implying an atmospheric forcing of +4.9 W
m^(-2). Though absolute value of the atmospheric forcing is quite small, which
arises primarily from the very low AOD (or the column abundance of aerosols),
the forcing efficiency (forcing per unit optical depth) was 88 W m^(-2),
which is attributed to the high BC mass fraction.Comment: 32 Pages, Accepted in JGR (Atmosphere
Recommended from our members
The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing
Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF)
Recommended from our members
Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model
A principal goal of the Atmospheric Radiation Measurement (ARM) Program is to understand the 3D cloud-radiation problem from scales ranging from the local to the size of global climate model (GCM) grid squares. For climate models using typical cloud overlap schemes, 3D radiative effects are minimal for all but the most complicated cloud fields. However, with the introduction of ''superparameterization'' methods, where sub-grid cloud processes are accounted for by embedding high resolution 2D cloud system resolving models within a GCM grid cell, the impact of 3D radiative effects on the local scale becomes increasingly relevant (Randall et al. 2003). In a recent study, we examined this issue by comparing the heating rates produced from a 3D and 1D shortwave radiative transfer model for a variety of radar derived cloud fields (O'Hirok and Gautier 2005). As demonstrated in Figure 1, the heating rate differences for a large convective field can be significant where 3D effects produce areas o f intense local heating. This finding, however, does not address the more important question of whether 3D radiative effects can alter the dynamics and structure of a cloud field. To investigate that issue we have incorporated a 3D radiative transfer algorithm into the Weather Research and Forecasting (WRF) model. Here, we present very preliminary findings of a comparison between cloud fields generated from a high resolution non-hydrostatic mesoscale numerical weather model using 1D and 3D radiative transfer codes
- …