511 research outputs found
Edge Critical Behaviour of the 2-Dimensional Tri-critical Ising Model
Using previous results from boundary conformal field theory and
integrability, a phase diagram is derived for the 2 dimensional Ising model at
its bulk tri-critical point as a function of boundary magnetic field and
boundary spin-coupling constant. A boundary tri-critical point separates phases
where the spins on the boundary are ordered or disordered. In the latter range
of coupling constant, there is a non-zero critical field where the
magnetization is singular. In the former range, as the temperature is lowered,
the boundary undergoes a first order transition while the bulk simultaneously
undergoes a second order transition.Comment: 6 pages, RevTex, 3 postscript figure
D-Branes on K3-Fibrations
B-type D-branes are constructed on two different K3-fibrations over IP_1
using boundary conformal field theory at the rational Gepner points of these
models. The microscopic CFT charges are compared with the Ramond charges of
D-branes wrapped on holomorphic cycles of the corresponding Calabi-Yau
manifold. We study in particular D4-branes and bundles localized on the K3
fibers, and find from CFT that each irreducible component of a bundle on K3
gains one modulus upon fibration over IP_1. This is in agreement with
expectations and so provides a further test of the boundary CFT.Comment: 16p, harvmac, tables.tex; typos corrected, refs added, discussion
about moduli spaces improve
The Landau-Ginzburg to Calabi-Yau Dictionary for D-Branes
Based on work by Orlov, we give a precise recipe for mapping between B-type
D-branes in a Landau-Ginzburg orbifold model (or Gepner model) and the
corresponding large-radius Calabi-Yau manifold. The D-branes in Landau-Ginzburg
theories correspond to matrix factorizations and the D-branes on the Calabi-Yau
manifolds are objects in the derived category. We give several examples
including branes on quotient singularities associated to weighted projective
spaces. We are able to confirm several conjectures and statements in the
literature.Comment: 24 pages, refs added + minor correctio
Twisted boundary states in c=1 coset conformal field theories
We study the mutual consistency of twisted boundary conditions in the coset
conformal field theory G/H. We calculate the overlap of the twisted boundary
states of G/H with the untwisted ones, and show that the twisted boundary
states are consistently defined in the diagonal modular invariant. The overlap
of the twisted boundary states is expressed by the branching functions of a
twisted affine Lie algebra. As a check of our argument, we study the diagonal
coset theory so(2n)_1 \oplus so(2n)_1/so(2n)_2, which is equivalent with the
orbifold S^1/\Z_2. We construct the boundary states twisted by the
automorphisms of the unextended Dynkin diagram of so(2n), and show their mutual
consistency by identifying their counterpart in the orbifold. For the triality
of so(8), the twisted states of the coset theory correspond to neither the
Neumann nor the Dirichlet boundary states of the orbifold and yield the
conformal boundary states that preserve only the Virasoro algebra.Comment: 44 pages, 1 figure; (v2) minor change in section 2.3, references
adde
Generalised permutation branes
We propose a new class of non-factorising D-branes in the product group GxG
where the fluxes and metrics on the two factors do not necessarily coincide.
They generalise the maximally symmetric permutation branes which are known to
exist when the fluxes agree, but break the symmetry down to the diagonal
current algebra in the generic case. Evidence for the existence of these branes
comes from a Lagrangian description for the open string world-sheet and from
effective Dirac-Born-Infeld theory. We state the geometry, gauge fields and, in
the case of SU(2)xSU(2), tensions and partial results on the open string
spectrum. In the latter case the generalised permutation branes provide a
natural and complete explanation for the charges predicted by K-theory
including their torsion.Comment: 33 pages, 6 figures, v2: Extended discussion of K-theory
interpretation of our branes for products of higher rank groups in the
conclusions; v3: Correction of formula (35) and adjustment of the discussion
below equation (45) (no change of result). Footnote 9 points out a previously
unnoticed subtlety and provides a reference to a more detailed discussio
Manifestly Supersymmetric RG Flows
Renormalisation group (RG) equations in two-dimensional N=1 supersymmetric
field theories with boundary are studied. It is explained how a manifestly N=1
supersymmetric scheme can be chosen, and within this scheme the RG equations
are determined to next-to-leading order. We also use these results to revisit
the question of how brane obstructions and lines of marginal stability appear
from a world-sheet perspective.Comment: 22 pages; references added, minor change
Tensor Product and Permutation Branes on the Torus
We consider B-type D-branes in the Gepner model consisting of two minimal
models at k=2. This Gepner model is mirror to a torus theory. We establish the
dictionary identifying the B-type D-branes of the Gepner model with A-type
Neumann and Dirichlet branes on the torus.Comment: 26 page
Time Dependent Solution in Cubic String Field Theory
We study time dependent solutions in cubic open string field theory which are
expected to describe the configuration of the rolling tachyon. We consider the
truncated system consisting of component fields of level zero and two, which
are expanded in terms of cosh n x^0 modes. For studying the large time behavior
of the solution we need to know the coefficients of all and, in particular,
large n modes. We examine numerically the coefficients of the n-th mode, and
find that it has the leading n-dependence of the form (-\beta)^n \lambda^{-n^2}
multiplied by a peculiar subleading part with peaks at
n=2^m=4,8,16,32,64,128,.... This behavior is also reproduced analytically by
solving simplified equations of motion of the tachyon system.Comment: 22 pages, 12 figures, LaTeX2e, v3:minor correction
Opening Mirror Symmetry on the Quintic
Aided by mirror symmetry, we determine the number of holomorphic disks ending
on the real Lagrangian in the quintic threefold. The tension of the domainwall
between the two vacua on the brane, which is the generating function for the
open Gromov-Witten invariants, satisfies a certain extension of the
Picard-Fuchs differential equation governing periods of the mirror quintic. We
verify consistency of the monodromies under analytic continuation of the
superpotential over the entire moduli space. We reproduce the first few
instanton numbers by a localization computation directly in the A-model, and
check Ooguri-Vafa integrality. This is the first exact result on open string
mirror symmetry for a compact Calabi-Yau manifold.Comment: 26 pages. v2: minor corrections and improvement
Boundary States for D-branes with Traveling Waves
We construct boundary states for D-branes which carry traveling waves in the
covariant formalism. We compute their vacuum amplitudes to investigate their
interactions. In non-compact space, the vacuum amplitudes become trivial as is
common in plane wave geometries. However, we found that if they are
compactified in the traveling direction, then the amplitudes are affected by
non-trivial time dependent effects. The interaction between D-branes with waves
traveling in the opposite directions (`pulse-antipulse scattering') are also
computed. Furthermore, we apply these ideas to open string tachyon condensation
with traveling waves.Comment: 30 pages. 1 figure, Latex, minor corrections, references adde
- …
