34 research outputs found

    Thermal diffusivity measurement for p-Si and Ag/p-Si by photoacoustic technique

    Get PDF
    Thermal diffusivity (TD) of p-Si and Ag/p-Si samples were measured by photoacoustic technique using open photoacoustic cell (OPC). The samples were annealed by heating them at 960, 1050, 1200, and 1300 °C for 3 h in air. The thermal diffusivity of Ag-coated samples was obtained by fitting the photoacoustic experimental data to the thermally thick equation for Rosencwaig and Gersho (RG) theory. For the single layer samples, the thermal diffusivity can be obtained by fitting as well as by obtaining the critical frequency f c . In this study, the thermal diffusivity of the p-Si samples increased with increasing the annealing temperature. The thermal diffusivity of the Ag/p-Si samples, after reaching the maximum value of about 2.73 cm2/s at a temperature of 1200 °C, decreased due to the silver complete melt in the surface of the silicon

    An efficient coupled polynomial interpolation scheme for shear mode sandwich beam finite element

    No full text
    An efficient piezoelectric sandwich beam finite element is presented here. It employs the coupled polynomial field interpolation scheme for field variables which incorporates electromechanical coupling at interpolation level itself; unlike conventional sandwich beam theory (SBT) based formulations available in the literature. A variational formulation is used to derive the governing equations, which are used to establish the relationships between field variables. These relations lead to the coupled polynomial field descriptions of variables, unlike conventional SBT formulations which use assumed independent polynomials. The relative axial displacement is expressed only by coupled terms containing contributions from other mechanical and electrical variables, thus eliminating use of the transverse displacement derivative as a degree of freedom. A set of coupled shape function based on these polynomials has shown the improvement in the convergence characteristics of the SBT based formulation. This improvement in the performance is achieved with one nodal degree of freedom lesser than the conventional SBT formulations

    An efficient coupled polynomial interpolation scheme to eliminate material-locking in the Euler-Bernoulli piezoelectric beam finite element

    No full text
    The convergence characteristic of the conventional two-noded Euler-Bernoulli piezoelectric beam finite element depends on the configuration of the beam cross-section. The element shows slower convergence for the asymmetric material distribution in the beam cross-section due to 'material-locking' caused by extension-bending coupling. Hence, the use of conventional Euler-Bernoulli beam finite element to analyze piezoelectric beams which are generally made of the host layer with asymmetrically surface bonded piezoelectric layers/patches, leads to increased computational effort to yield converged results. Here, an efficient coupled polynomial interpolation scheme is proposed to improve the convergence of the Euler-Bernoulli piezoelectric beam finite elements, by eliminating ill-effects of material-locking. The equilibrium equations, derived using a variational formulation, are used to establish relationships between field variables. These relations are used to find a coupled quadratic polynomial for axial displacement, having contributions from an assumed cubic polynomial for transverse displacement and assumed linear polynomials for layerwise electric potentials. A set of coupled shape functions derived using these polynomials efficiently handles extension-bending and electromechanical couplings at the field interpolation level itself in a variationally consistent manner, without increasing the number of nodal degrees of freedom. The comparison of results obtained from numerical simulation of test problems shows that the convergence characteristic of the proposed element is insensitive to the material configuration of the beam cross-section

    A Timoshenko Piezoelectric Beam Finite Element with Consistent Performance Irrespective of Geometric and Material Configurations

    No full text
    Abstract The conventional Timoshenko piezoelectric beam finite elements based on First-order Shear Deformation Theory (FSDT) do not maintain the accuracy and convergence consistently over the applicable range of material and geometric properties. In these elements, the inaccuracy arises due to the induced potential effects in the transverse direction and inefficiency arises due to the use of independently assumed linear polynomial interpolation of the field variables in the longitudinal direction. In this work, a novel FSDT-based piezoelectric beam finite element is proposed which is devoid of these deficiencies. A variational formulation with consistent through-thickness potential is developed. The governing equilibrium equations are used to derive the coupled field relations. These relations are used to develop a polynomial interpolation scheme which properly accommodates the bending-extension, bending-shear and induced potential couplings to produce accurate results in an efficient manner. It is noteworthy that this consistently accurate and efficient beam finite element uses the same nodal variables as of conventional FSDT formulations available in the literature. Comparison of numerical results proves the consistent accuracy and efficiency of the proposed formulation irrespective of geometric and material configurations, unlike the conventional formulations

    An accurate novel coupled field Timoshenko piezoelectric beam finite element with induced potential effects

    No full text
    An accurate coupled field piezoelectric beam finite element formulation is presented. The formulation is based on First-order Shear Deformation Theory (FSDT) with layerwise electric potential. An appropriate through-thickness electric potential distribution is derived using electrostatic equilibrium equations, unlike conventional FSDT based formulations which use assumed independent layerwise linear potential distribution. The derived quadratic potential consists of a coupled term which takes care of induced potential and the associated change in stiffness, without bringing in any additional electrical degrees of freedom. It is shown that the effects of induced potential are significant when piezoelectric material dominates the structure configuration. The accurate results as predicted by a refined 2D simulation are achieved with only single layer modeling of piezolayer by present formulation. It is shown that the conventional formulations require sublayers in modeling, to reproduce the results of similar accuracy. Sublayers add additional degrees of freedom in the conventional formulations and hence increase computational cost. The accuracy of the present formulation has been verified by comparing results obtained from numerical simulation of test problems with those obtained by conventional formulations with sublayers and ANSYS 2D simulations
    corecore