6,635 research outputs found

    Strongly Enhanced Hole-Phonon Coupling in the Metallic State of the Dilute Two-Dimensional Hole Gas

    Full text link
    We have studied the temperature dependent phonon emission rate PP(TT) of a strongly interacting (rsr_s\geq22) dilute 2D GaAs hole system using a standard carrier heating technique. In the still poorly understood metallic state, we observe that PP(TT) changes from PP(TT)T5\sim T^5 to PP(TT)T7\sim T^7 above 100mK, indicating a crossover from screened piezoelectric(PZ) coupling to screened deformation potential(DP) coupling for hole-phonon scattering. Quantitative comparison with theory shows that the long range PZ coupling between holes and phonons has the expected magnitude; however, in the metallic state, the short range DP coupling between holes and phonons is {\it almost twenty times stronger} than expected from theory. The density dependence of PP(TT) shows that it is {\it easier} to cool low density 2D holes in GaAs than higher density 2D hole systems.Comment: To appear in Phys. Rev. Let

    Suppression of weak localization effects in low-density metallic 2D holes

    Full text link
    We have measured the conductivity in a gated high-mobility GaAs two dimensional hole sample with densities in the range (7-17)x10^9 cm^-2 and at hole temperatures down to 5x10^-3 E_F. We measure the weak localization corrections to the conductivity g=G/(e^2/h) as a function of magnetic field (Delta g=0.019 +/- 0.006 at g=1.5 and T=9 mK) and temperature (d ln g/dT<0.0058 and 0.0084 at g=1.56 and 2.8). These values are less than a few percent of the value 1/pi predicted by standard weak localization theory for a disordered 2D Fermi liqui

    Power supplies using high frequency modules Final report, Jun. 1965 - Jan. 1967

    Get PDF
    Design of high frequency dc-dc converter modules for power conditioning subsystems, and control system for operating ion engines in space environmen

    Unconventional ferromagnetic and spin-glass states of the reentrant spin glass Fe0.7Al0.3

    Full text link
    Spin excitations of single crystal Fe0.7Al0.3 were investigated over a wide range in energy and reciprocal space with inelastic neutron scattering. In the ferromagnetic phase, propagating spin wave modes become paramagnon-like diffusive modes beyond a critical wave vector q0, indicating substantial disorder in the long-range ordered state. In the spin glass phase, spin dynamics is strongly q-dependent, suggesting remnant short-range spin correlations. Quantitative model for S(energy,q) in the ``ferromagnetic'' phase is determined.Comment: 4 pages, 5 figure

    The metallic resistance of a dilute two-dimensional hole gas in a GaAs quantum well: two-phase separation at finite temperature?

    Full text link
    We have studied the magnetotransport properties of a high mobility two-dimensional hole gas (2DHG) system in a 10nm GaAs quantum well (QW) with densities in range of 0.7-1.6*10^10 cm^-2 on the metallic side of the zero-field 'metal-insulator transition' (MIT). In a parallel field well above B_c that suppresses the metallic conductivity, the 2DHG exhibits a conductivity g(T)~0.3(e^2/h)lnT reminiscent of weak localization. The experiments are consistent with the coexistence of two phases in our system: a metallic phase and a weakly insulating Fermi liquid phase having a percolation threshold close to B_c

    A Profile Likelihood Analysis of the Constrained MSSM with Genetic Algorithms

    Full text link
    The Constrained Minimal Supersymmetric Standard Model (CMSSM) is one of the simplest and most widely-studied supersymmetric extensions to the standard model of particle physics. Nevertheless, current data do not sufficiently constrain the model parameters in a way completely independent of priors, statistical measures and scanning techniques. We present a new technique for scanning supersymmetric parameter spaces, optimised for frequentist profile likelihood analyses and based on Genetic Algorithms. We apply this technique to the CMSSM, taking into account existing collider and cosmological data in our global fit. We compare our method to the MultiNest algorithm, an efficient Bayesian technique, paying particular attention to the best-fit points and implications for particle masses at the LHC and dark matter searches. Our global best-fit point lies in the focus point region. We find many high-likelihood points in both the stau co-annihilation and focus point regions, including a previously neglected section of the co-annihilation region at large m_0. We show that there are many high-likelihood points in the CMSSM parameter space commonly missed by existing scanning techniques, especially at high masses. This has a significant influence on the derived confidence regions for parameters and observables, and can dramatically change the entire statistical inference of such scans.Comment: 47 pages, 8 figures; Fig. 8, Table 7 and more discussions added to Sec. 3.4.2 in response to referee's comments; accepted for publication in JHE

    What are the experimentally observable effects of vertex corrections in superconductors?

    Full text link
    We calculate the effects of vertex corrections, of non-constant density of states and of a (self-consistently determined) phonon self-energy for the Holstein model on a 3D cubic lattice. We replace vertex corrections with a Coulomb pseudopotential, mu*, adjusted to give the same Tc, and repeat the calculations, to see which effects are a distinct feature of vertex corrections. This allows us to determine directly observable effects ofvertex corrections on a variety of thermodynamic properties of superconductors. To this end, we employ conserving approximations (in the local approximation) to calculate the superconducting critical temperatures, isotope coefficients, superconducting gaps, free-energy differences and thermodynamic critical fields for a range of parameters. We find that the dressed value of lambda is significantly larger than the bare value. While vertex corrections can cause significant changes in all the above quantities (even whenthe bare electron-phonon coupling is small), the changes can usually be well-modeled by an appropriate Coulomb pseudopotential. The isotope coefficient proves to be the quantity that most clearly shows effects of vertex corrections that can not be mimicked by a mu*.Comment: 28 pages, 12 figure

    Oscillatory Exchange Coupling and Positive Magnetoresistance in Epitaxial Oxide Heterostructures

    Full text link
    Oscillations in the exchange coupling between ferromagnetic La2/3Ba1/3MnO3La_{2/3}Ba_{1/3}MnO_3 layers with paramagnetic LaNiO3LaNiO_3 spacer layer thickness has been observed in epitaxial heterostructures of the two oxides. This behavior is explained within the RKKY model employing an {\it ab initio} calculated band structure of LaNiO3LaNiO_3, taking into account strong electron scattering in the spacer. Antiferromagnetically coupled superlattices exhibit a positive current-in-plane magnetoresistance.Comment: 4 pages (RevTeX), 5 figures (EPS
    corecore