277 research outputs found

    Testing Isotropy of Cosmic Microwave Background Radiation

    Full text link
    We introduce new symmetry-based methods to test for isotropy in cosmic microwave background radiation. Each angular multipole is factored into unique products of power eigenvectors, related multipoles and singular values that provide 2 new rotationally invariant measures mode by mode. The power entropy and directional entropy are new tests of randomness that are independent of the usual CMB power. Simulated galactic plane contamination is readily identified, and the new procedures mesh perfectly with linear transformations employed for windowed-sky analysis. The ILC -WMAP data maps show 7 axes well aligned with one another and the direction Virgo. Parameter free statistics find 12 independent cases of extraordinary axial alignment, low power entropy, or both having 5% probability or lower in an isotropic distribution. Isotropy of the ILC maps is ruled out to confidence levels of better than 99.9%, whether or not coincidences with other puzzles coming from the Virgo axis are included. Our work shows that anisotropy is not confined to the low l region, but extends over a much larger l range.Comment: 40 pages 15 figure

    Coexpression of PPE 34.9 Antigen of Mycobacterium avium subsp. Paratuberculosis with Murine Interferon Gamma in HeLa Cell Line and Study of Their Immunogenicity in Murine Model

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (Map) is the causative agent of johne's disease whose immunopathology mainly depends on cell mediated immuneresponse. Genome sequencing revealed various PPE (Proline-Proline-Glutamic acid) protein family of Map which are immunologically importance candidate genes In present study we have developed a bicistrionic construct pIR PPE/IFN containing a 34.9 kDa PPE protein (PPE 34.9) of Map along with a cytokine gene encoding murine gamma Interferon gene (IFNγ) and a monocistrionic construct pIR PPE using a mammalian vector system pIRES 6.1. The construct were transfected in HeLa cell line and expression were studied by Western blot as well as Immunefluroscent assay using recombinant sera. Further we have compared the immunereactivity of these two constructs in murine model by means of DTH study, LTT, NO assay and ELISA. DTH response was higher in pIR PPE/IFN than pIR PPE group of mice, similar finding also observed in case of LTT and NO production assay . ELISA titer of the pIR PPE/IFN was less than that with PPE only. These preliminary finding can revealed a CMI response of this PPE protein of Map and IFNγ having synergistic effect on this PPE protein to elicit a T cell based immunity in mice

    Expression of a Gene Encoding 34.9 kDa PPE Antigen of Mycobacterium avium subsp. paratuberculosis in E. coli

    Get PDF
    Mycobacterium avium subsp. paratuberculosis (Map) contains PPE family antigens which are Proline and glutamic acid rich and may play important role as T cell antigens. Hence the identification and generation of antigens are necessary for immunological characterization. In the present study, the epitopic region of a unique PPE gene encoding 34.9 kDa protein from Map was amplified by polymerase chain reaction. The gene was cloned into Escherichia coli vector pQE30 UA. The recombinant plasmid designated as pQPPE was transformed into E. coli M15 and induced with IPTG revealed the high level expression of 37.1 kDa His-fusion protein (34.9 kDa PPE and 2.2 kDa His-tag), which was confirmed by immunoblotting. Recombinant PPE protein was then purified by Ni-NTA agarose chromatography. The polyclonal antiserum raised against purified recombinant PPE protein reacted with expressed 37.1 kDa His-fusion protein as well as with Map sonicate. The protein elicited significant delayed type hypersensitivity (DTH) skin reaction in mice sensitized with Map. The results indicated that the recombinant PPE protein of Map was associated with cellular immune response

    Electric field driven destabilization of the insulating state in nominally pure LaMnO3

    Full text link
    We report an electric field driven destabilization of the insulating state in nominally pure LaMnO3 single crystal with a moderate field which leads to a resistive state transition below 300 K. The transition is between the insulating state in LaMnO3 and a high resistance bad metallic state that has a temperature independent resistivity. The transition occurs at a threshold field (Eth) which shows a steep enhancement on cooling. While at lower temperatures the transition is sharp and involves large change in resistance but it softens on heating and eventually absent above 280K. When the Mn4+ content is increased by Sr substitution up to x=0.1, the observed transition though observable in certain temperature range, softens considerably. The observation has been explained as bias driven percolation type transition between two coexisting phases, where the majority phase is a charge and orbitally ordered polaronic insulating phase and the minority phase is a bad metallic phase. The mobile fraction f of the bad metallic phase deduced from the experimental data follows an activated kinetics with the activation energy nearly equal to 200 meV and the prefactor fo is a strong function of the field that leads to a rapid enhancement of f on application of field leading to the resistive state transition. We suggest likely scenarios for such co-existing phases in nominally pure LaMnO3 that can lead to the bias driven percolation type transition.Comment: Accepted in JPC

    Atomistic simulations of adiabatic coherent electron transport in triple donor systems

    Get PDF
    A solid-state analogue of Stimulated Raman Adiabatic Passage can be implemented in a triple well solid-state system to coherently transport an electron across the wells with exponentially suppressed occupation in the central well at any point of time. Termed coherent tunneling adiabatic passage (CTAP), this method provides a robust way to transfer quantum information encoded in the electronic spin across a chain of quantum dots or donors. Using large scale atomistic tight-binding simulations involving over 3.5 million atoms, we verify the existence of a CTAP pathway in a realistic solid-state system: gated triple donors in silicon. Realistic gate profiles from commercial tools were combined with tight-binding methods to simulate gate control of the donor to donor tunnel barriers in the presence of cross-talk. As CTAP is an adiabatic protocol, it can be analyzed by solving the time independent problem at various stages of the pulse - justifying the use of time-independent tight-binding methods to this problem. Our results show that a three donor CTAP transfer, with inter-donor spacing of 15 nm can occur on timescales greater than 23 ps, well within experimentally accessible regimes. The method not only provides a tool to guide future CTAP experiments, but also illuminates the possibility of system engineering to enhance control and transfer times.Comment: 8 pages, 5 figure

    The Advantage of Increased Resolution in the Study of Quasar Absorption Systems

    Get PDF
    We compare a new R = 120,000 spectrum of PG1634+706 (z_QSO = 1.337,m_V = 14.9) obtained with the HDS instrument on Subaru to a R = 45, 000 spectrum obtained previously with HIRES/Keck. In the strong MgII system at z = 0.9902 and the multiple cloud, weak MgII system at z = 1.0414, we find that at the higher resolution, additional components are resolved in a blended profile. We find that two single-cloud weak MgII absorbers were already resolved at R = 45,000, to have b = 2 - 4 km/s. The narrowest line that we measure in the R = 120, 000 spectrum is a component of the Galactic NaI absorption, with b = 0.90+/-0.20 km/s. We discuss expectations of similarly narrow lines in various applications, including studies of DLAs, the MgI phases of strong MgII absorbers, and high velocity clouds. By applying Voigt profile fitting to synthetic lines, we compare the consistency with which line profile parameters can be accurately recovered at R = 45,000 and R = 120,000. We estimate the improvement gained from superhigh resolution in resolving narrowly separated velocity components in absorption profiles. We also explore the influence of isotope line shifts and hyperfine splitting in measurements of line profile parameters, and the spectral resolution needed to identify these effects. Super high resolution spectra of quasars, which will be routinely possible with 20-meter class telescopes, will lead to greater sensitivity for absorption line surveys, and to determination of more accurate physical conditions for cold phases of gas in various environments.Comment: To appear in AJ. Paper with better resolution images available at http://www.astro.psu.edu/users/anand/superhigh.AJ.pd

    Signals of statistical anisotropy in WMAP foreground-cleaned maps

    Get PDF
    Recently, a symmetry-based method to test for statistical isotropy of the cosmic microwave background was developed. We apply the method to template-cleaned 3- and 5-years Wilkinson Microwave Anisotropy Probe-Differencing Assembly maps. We examine a wide range of angular multipoles from 2 < l < 300. The analysis detects statistically significant signals of anisotropy inconsistent with an isotropic cosmic microwave background in some of the foreground-cleaned maps. We are unable to resolve whether the anomalies have a cosmological, local astrophysical or instrumental origin. Assuming the anisotropy arises due to residual foreground contamination, we estimate the residual foreground power in the maps. For the W-band maps, we also find a highly improbable degree of isotropy we cannot explain. We speculate that excess isotropy may be caused by faulty modelling of detector noise

    Orbital Stark effect and quantum confinement transition of donors in silicon

    Get PDF
    Adiabatic shuttling of single impurity bound electrons to gate induced surface states in semiconductors has attracted much attention in recent times, mostly in the context of solid-state quantum computer architecture. A recent transport spectroscopy experiment for the first time was able to probe the Stark shifted spectrum of a single donor in silicon buried close to a gate. Here we present the full theoretical model involving large-scale quantum mechanical simulations that was used to compute the Stark shifted donor states in order to interpret the experimental data. Use of atomistic tight-binding technique on a domain of over a million atoms helped not only to incorporate the full band structure of the host, but also to treat realistic device geometries and donor models, and to use a large enough basis set to capture any number of donor states. The method yields a quantitative description of the symmetry transition that the donor electron undergoes from a 3D Coulomb confined state to a 2D surface state as the electric field is ramped up adiabatically. In the intermediate field regime, the electron resides in a superposition between the states of the atomic donor potential and that of the quantum dot like states at the surface. In addition to determining the effect of field and donor depth on the electronic structure, the model also provides a basis to distinguish between a phosphorus and an arsenic donor based on their Stark signature. The method also captures valley-orbit splitting in both the donor well and the interface well, a quantity critical to silicon qubits. The work concludes with a detailed analysis of the effects of screening on the donor spectrum.Comment: 10 pages, 10 figures, journa
    corecore