34,003 research outputs found
Discrete Wigner functions and quantum computational speedup
In [Phys. Rev. A 70, 062101 (2004)] Gibbons et al. defined a class of
discrete Wigner functions W to represent quantum states in a finite Hilbert
space dimension d. I characterize a set C_d of states having non-negative W
simultaneously in all definitions of W in this class. For d<6 I show C_d is the
convex hull of stabilizer states. This supports the conjecture that negativity
of W is necessary for exponential speedup in pure-state quantum computation.Comment: 7 pages, 2 figures, RevTeX. v2: clarified discussion on dynamics,
added refs., published versio
The Energy Spectrum of Primary Cosmic Ray Electrons in Clusters of Galaxies and Inverse Compton Emission
Models for the evolution of the integrated energy spectrum of primary cosmic
ray electrons in clusters of galaxies have been calculated, including the
effects of losses due to inverse Compton (IC), synchrotron, and bremsstrahlung
emission, and Coulomb losses to the intracluster medium (ICM). The combined
time scale for these losses reaches a maximum of ~3e9 yr for electrons with a
Lorentz factor ~300. Only clusters in which there has been a substantial
injection of relativistic electrons since z <~ 1 will have any significant
population of primary cosmic ray electrons at present. In typical models, there
is a broad peak in the electron energy distribution extending to gamma~300, and
a steep drop in the electron population beyond this. In clusters with current
particle injection, there is a power-law tail of higher energy electrons with
an abundance determined by the current rate of injection. A significant
population of electrons with gamma~300, associated with the peak in the
particle loss time, is a generic feature of the models. The IC and synchrotron
emission from these models was calculated. In the models, EUV and soft X-ray
emission are nearly ubiquitous. This emission is produced by electrons with
gamma~300. The spectra are predicted to drop rapidly in going from the EUV to
the X-ray band. The IC emission also extends down the UV, optical, and IR bands
with a fairly flat spectrum. Hard X-ray (HXR) and diffuse radio emission due to
high energy electrons (gamma~10e4) is present only in clusters which have
current particle acceleration. Assuming that the electrons are accelerated in
ICM shocks, one would only expect diffuse HXR/radio emission in clusters which
are currently undergoing a large merger.Comment: Accepted for publication in the Astrophysical Journal, with minor
revisons to wording for clarity and one additional reference. 19 pages with
16 embedded Postscript figures in emulateapj.sty. Abbreviated abstract belo
Composition profiles of InAs–GaAs quantum dots determined by medium-energy ion scattering
The composition profile along the [001] growth direction of low-growth-rate InAs–GaAs quantum dots (QDs) has been determined using medium-energy ion scattering (MEIS). A linear profile of In concentration from 100% In at the top of the QDs to 20% at their base provides the best fit to MEIS energy spectra
Discovery of Two High-Magnetic-Field Radio Pulsars
We report the discovery of two young isolated radio pulsars with very high
inferred magnetic fields. PSR J1119-6127 has period P = 0.407 s, and the
largest period derivative known among radio pulsars, Pdot = 4.0e-12. Under
standard assumptions these parameters imply a characteristic spin-down age of
only tau = 1.6 kyr and a surface dipole magnetic field strength of B = 4.1e13
G. We have measured a stationary period-second-derivative for this pulsar,
resulting in a braking index of n = 2.91+-0.05. We have also observed a glitch
in the rotation of the pulsar, with fractional period change Delta_P/P =
-4.4e-9. Archival radio imaging data suggest the presence of a previously
uncataloged supernova remnant centered on the pulsar. The second pulsar, PSR
J1814-1744, has P = 3.975 s and Pdot = 7.4e-13. These parameters imply tau = 85
kyr, and B = 5.5e13 G, the largest of any known radio pulsar.
Both PSR J1119-6127 and PSR J1814-1744 show apparently normal radio emission
in a regime of magnetic field strength where some models predict that no
emission should occur. Also, PSR J1814-1744 has spin parameters similar to the
anomalous X-ray pulsar (AXP) 1E 2259+586, but shows no discernible X-ray
emission. If AXPs are isolated, high magnetic field neutron stars
(``magnetars''), these results suggest that their unusual attributes are
unlikely to be merely a consequence of their very high inferred magnetic
fields.Comment: 7 pages, 3 embedded EPS figures, to be published in Ap
Short range correlations in relativistic nuclear matter models
Short range correlations are introduced using unitary correlation method in a
relativistic approach to the equation of state of the infinite nuclear matter
in the framework of the Hartree-Fock approximation. It is shown that the
correlations give rise to an extra node in the ground-state wave-function in
the nucleons, contrary to what happens in non-relativistic calculations with a
hard core. The effect of the correlations in the ground state properties of the
nuclear matter and neutron matter is studied. The nucleon effective mass and
equation of state (EOS) are very sensitive to short range correlations. In
particular, if the pion contact term is neglected a softening of the EOS is
predicted. Correlations have also an important effect on the neutron matter EOS
which presents no binding but only a very shallow minimum contrary to the
Walecka model.Comment: 8pages, 4 figure
C and N Abundances in Stars At the Base of the Red Giant Branch in M5
We present an analysis of a large sample of moderate resolution Keck LRIS
spectra of subgiant (V \sim 17.2) and fainter stars in the Galactic globular
cluster M5 (NGC 5904) with the goal of deriving C and N abundances.
Star-to-star stochastic variations with significant range in both [C/Fe] and
[N/Fe] are found at all luminosities extending to the bottom of the RGB at M_V
\sim +3. Similar variations in CH appear to be present in the main sequence
turnoff spectra. There is no sign of a change in the behavior of C and N with
evolutionary stage over the full range in luminosity of the RGB and SGB. The C
and N abundances appear strongly anti-correlated, as would be expected from the
CN-cycle processing of stellar material. Yet the present stars are considerably
fainter than the RGB bump, the point at which deep mixing is believed to set
in. On this basis, while the observed abundance pattern is consistent with
proton capture nucleosynthesis, we infer that the site of the reactions is
likely not within the present sample, but rather in a population of more
massive (2 -- 5 M(Sun)) now defunct stars. The range of variation of the N
abundances is very large and the sum of C+N increases as C decreases. To
reproduce this requires the incorporation not only of CN but also of
ON-processed material. Furthermore, the existence of this correlation is quite
difficult to reproduce with an external mechanism such as ``pollution'' with
material processed in a more massive AGB star, which mechanism is fundamentally
stochastic in nature. We therefore suggest that although the internal mixing
hypothesis has serious flaws,new theoretical insights are needed and it should
not be ruled out yet. (abridged)Comment: Slightly updated version to conform to that accepted by the A
The origin of phase in the interference of Bose-Einstein condensates
We consider the interference of two overlapping ideal Bose-Einstein
condensates. The usual description of this phenomenon involves the introduction
of a so-called condensate wave functions having a definite phase. We
investigate the origin of this phase and the theoretical basis of treating
interference. It is possible to construct a phase state, for which the particle
number is uncertain, but phase is known. However, how one would prepare such a
state before an experiment is not obvious. We show that a phase can also arise
from experiments using condensates in Fock states, that is, having known
particle numbers. Analysis of measurements in such states also gives us a
prescription for preparing phase states. The connection of this procedure to
questions of ``spontaneously broken gauge symmetry'' and to ``hidden
variables'' is mentioned.Comment: 22 pages 4 figure
Statistical Mechanics of Quantum-Classical Systems with Holonomic Constraints
The statistical mechanics of quantum-classical systems with holonomic
constraints is formulated rigorously by unifying the classical Dirac bracket
and the quantum-classical bracket in matrix form.
The resulting Dirac quantum-classical theory, which conserves the holonomic
constraints exactly, is then used to formulate time evolution and statistical
mechanics. The correct momentum-jump approximation for constrained system
arises naturally from this formalism. Finally, in analogy with what was found
in the classical case, it is shown that the rigorous linear response function
of constrained quantum-classical systems contains non-trivial additional terms
which are absent in the response of unconstrained systems.Comment: Submitted to Journal of Chemical Physic
Ensemble inequivalence in systems with long-range interactions
Ensemble inequivalence has been observed in several systems. In particular it
has been recently shown that negative specific heat can arise in the
microcanonical ensemble in the thermodynamic limit for systems with long-range
interactions. We display a connection between such behaviour and a mean-field
like structure of the partition function. Since short-range models cannot
display this kind of behaviour, this strongly suggests that such systems are
necessarily non-mean field in the sense indicated here. We illustrate our
results showing an application to the Blume-Emery-Griffiths model. We further
show that a broad class of systems with non-integrable interactions are indeed
of mean-field type in the sense specified, so that they are expected to display
ensemble inequivalence as well as the peculiar behaviour described above in the
microcanonical ensemble.Comment: 12 pages, no figure
Cygnus X-3 in outburst : quenched radio emission, radiation losses and variable local opacity
We present multiwavelength observations of Cygnus X-3 during an extended
outburst in 1994 February - March. Intensive radio monitoring at 13.3, 3.6 &
2.0 cm is complemented by observations at (sub)millimetre and infrared
wavelengths, which find Cyg X-3 to be unusually bright and variable, and
include the first reported detection of the source at 0.45 mm. We report the
first confirmation of quenched radio emission prior to radio flaring
independent of observations at Green Bank. The observations reveal evidence for
wavelength-dependent radiation losses and gradually decreasing opacity in the
environment of the radio jet. We find that the radiation losses are likely to
be predominantly inverse Compton losses experienced by the radio-emitting
electrons in the strong radiation field of a luminous companion to the compact
object. We interpret the decreasing opacity during the flare sequence as
resulting from a decreasing proportion of thermal electrons entrained in the
jet, reflecting a decreasing density in the region of jet formation. We
present, drawing in part on the work of other authors, a model based upon
mass-transfer rate instability predicting gamma-ray, X-ray, infrared and radio
trends during a radio flaring sequence.Comment: LaTeX, 11 pages, 6 figures. Submitted to MNRA
- …