592,219 research outputs found
Elemental boron doping behavior in silicon molecular beam epitaxy
Boron-doped Si epilayers were grown by molecular beam epitaxy (MBE) using an elemental boron source, at levels up to 2Ă1020 cmâ3, to elucidate profile control and electrical activation over the growth temperature range 450â900 °C. Precipitation and surface segregation effects were observed at doping levels of 2Ă1020 cmâ3 for growth temperatures above 600 °C. At growth temperatures below 600 °C, excellent profile control was achieved with complete electrical activation at concentrations of 2Ă1020 cmâ3, corresponding to the optimal MBE growth conditions for a range of Si/SixGe1âx heterostructures
Ejaculate allocation by male sand martins, Riparia riparia
Males of many species allocate sperm to ejaculates strategically in response to variation in the risk and intensity of sperm competition. The notable exception is passerine birds, in which evidence for strategic allocation is absent. Here we report the results of a study testing for strategic ejaculate allocation in a passerine bird, the sand martin (Riparia riparia). Natural ejaculates were collected from males copulating with a model female. Ejaculates transferred in the presence of a rival male contained significantly more sperm than ejaculates transferred in the absence of a rival male. There was no evidence that this difference was due to the confounding effects of the year of ejaculate collection, the identity of the model female, the colony, the stage of season or the period of the day in which ejaculates were collected. A more detailed examination of the ejaculate patterns of individual males, achieved by the DNA profiling of ejaculates, provided additional evidence for strategic allocation of sperm
Growth studies on Si0.8Ge0.2 channel two-dimensional hole gases
We report a study of the influences of MBE conditions on the low-temperature mobilities of Si/Si0.8Ge0.2 2DHG structures. A significant dependence of 2DHG mobility on growth temperature is observed with the maximum mobility of 3640 cm2 Vâ1 sâ1 at 5.4 K being achieved at the relatively high-growth temperature of 640 °C. This dependence is associated with a reduction in interface charge density. Studies on lower mobility samples show that Cu contamination can be reduced both by growth interruptions and by modifications to the Ge source; this reduction produces improvements in the low-temperature mobilities. We suggest that interface charge deriving from residual metal contamination is currently limiting the 4-K mobility
Testing T Invariance in the Interaction of Slow Neutrons with Aligned Nuclei
The study of five-fold (P even, T odd) correlation in the interaction of slow
polarized neutrons with aligned nuclei is a possible way of testing the time
reversal invariance due to the expected enhancement of T violating effects in
compound resonances. Possible nuclear targets are discussed which can be
aligned both dynamically as well as by the "brute force" method at low
temperature. A statistical estimation is performed of the five-fold correlation
for low lying p wave compound resonances of the Sb, Sb and
I nuclei. It is shown that a significant improvement can be achieved
for the bound on the intensity of the fundamental parity conserving time
violating (PCTV) interaction.Comment: 22 pages, 5 figures, published versio
Selection Wages and Discrimination
Applicants for any given job are more or less suited to fill it, and the firm will select the best among them. Increasing the wage offer attracts more applicants and makes it possible to raise the hiring standard and improve the productivity of the staff. Wages that optimize on the trade-off between the wage level and the productivity of the workforce are known as selection wages. As men react more strongly to wage differentials than females, the trade-off is more pronounced for men and a profit-maximizing firm will offer a higher wage for men than for women in equilibrium
Constraints on the nucleosynthesis of refractory nuclides in galactic cosmic rays
Abundances of the isotopes of the refractory elements Ca, Fe, Co, and Ni in the galactic cosmic-ray source are compared with corresponding abundances in solar-system matter. For the 12 nuclides considered, relative abundances agree to within a factor of 2, and typically within 20â30%. In addition, comparisons of cosmic-ray abundances with model calculations of supernova yields are used to argue that cosmic rays contain contributions from stars with a broad range of masses. Based on these and other results we suggest that cosmic rays probably represent a sample of contemporary interstellar matter, at least for refractory species
Higher Resolution VLBI Imaging with Fast Frequency Switching
Millimetre-VLBI is an important tool in AGN astrophysics, but it is limited
by short atmospheric coherence times and poor receiver and antenna performance.
We demonstrate a new kind of phase referencing for the VLBA, enabling us to
increase the sensitivity in mm-VLBI by an order of magnitude. If a source is
observed in short cycles between the target frequency, nu_t, and a reference
frequency, nu_ref, the nu_t data can be calibrated using scaled-up phase
solutions from self-calibration at nu_ref. We have demonstrated the phase
transfer on 3C 279, where we were able to make an 86 GHz image with 90 %
coherence compared to self-calibration at nu_t. We have detected M81, our
science target in this project, at 86 GHz using the same technique. We describe
scheduling strategy and data reduction. The main impacts of fast frequency
switching are the ability to image some of the nearest, but relatively weak AGN
cores with unprecedented high angular resolution and to phase-reference the
nu_t data to the nu_ref core position, enabling the detection of possible core
shifts in jets due to optical depth effects. This ability will yield important
constraints on jet properties and might be able to discriminate between the two
competing emission models of Blandford-Konigl jets and spherical
advection-dominated accretion flows (ADAFs) in low-luminosity AGNs.Comment: 4 pages, 6 figures, appears in: Proceedings of the 6th European VLBI
Network Symposium held on June 25th-28th in Bonn, Germany. Edited by: E. Ros,
R.W. Porcas, A.P. Lobanov, and J.A. Zensu
Maximum Power Efficiency and Criticality in Random Boolean Networks
Random Boolean networks are models of disordered causal systems that can
occur in cells and the biosphere. These are open thermodynamic systems
exhibiting a flow of energy that is dissipated at a finite rate. Life does work
to acquire more energy, then uses the available energy it has gained to perform
more work. It is plausible that natural selection has optimized many biological
systems for power efficiency: useful power generated per unit fuel. In this
letter we begin to investigate these questions for random Boolean networks
using Landauer's erasure principle, which defines a minimum entropy cost for
bit erasure. We show that critical Boolean networks maximize available power
efficiency, which requires that the system have a finite displacement from
equilibrium. Our initial results may extend to more realistic models for cells
and ecosystems.Comment: 4 pages RevTeX, 1 figure in .eps format. Comments welcome, v2: minor
clarifications added, conclusions unchanged. v3: paper rewritten to clarify
it; conclusions unchange
Measurements of the isotopes of lithium, beryllium, and boron from ACE/CRIS
The isotopes of lithium, beryllium, and boron (LiBeB) are known in nature to be produced primarily by CNO spallation and α-α fusion from interactions between cosmic rays and interstellar nuclei. While the dominant source of LiBeB isotopes in the present epoch is cosmic-ray interactions, other sources are known to exist, including the production of ^(7)Li from big bang nucleosynthesis. Precise observations of galactic cosmic-ray LiBeB in addition to accurate modeling of cosmic-ray transport can help to constrain the relative importance among the different production mechanisms. The Cosmic Ray Isotope Spectrometer (CRIS) on the Advanced Composition Explorer (ACE) has measured nuclei with 2 âČ Z âČ 30 in the energy range ~30â500 MeV/nucleon since 1997 with good statistical accuracy. We present measurements of the isotopic abundances of LiBeB and discuss these observations in the context of previous cosmic-ray measurements and spectroscopic observations
Canonical form of Hamiltonian matrices
On the basis of shell model simulations, it is conjectured that the Lanczos
construction at fixed quantum numbers defines---within fluctuations and
behaviour very near the origin---smooth canonical matrices whose forms depend
on the rank of the Hamiltonian, dimensionality of the vector space, and second
and third moments. A framework emerges that amounts to a general Anderson model
capable of dealing with ground state properties and strength functions. The
smooth forms imply binomial level densities. A simplified approach to canonical
thermodynamics is proposed.Comment: 4 pages 6 figure
- âŠ