911 research outputs found

    PDB8 BURDEN OF DIABETES AND ASSOCIATED TREATMENT PATTERNS IN EUROPE: A COMPARISON OF SIX COUNTRIES

    Get PDF

    Pseudogap and high-temperature superconductivity from weak to strong coupling. Towards quantitative theory

    Full text link
    This is a short review of the theoretical work on the two-dimensional Hubbard model performed in Sherbrooke in the last few years. It is written on the occasion of the twentieth anniversary of the discovery of high-temperature superconductivity. We discuss several approaches, how they were benchmarked and how they agree sufficiently with each other that we can trust that the results are accurate solutions of the Hubbard model. Then comparisons are made with experiment. We show that the Hubbard model does exhibit d-wave superconductivity and antiferromagnetism essentially where they are observed for both hole and electron-doped cuprates. We also show that the pseudogap phenomenon comes out of these calculations. In the case of electron-doped high temperature superconductors, comparisons with angle-resolved photoemission experiments are nearly quantitative. The value of the pseudogap temperature observed for these compounds in recent photoemission experiments has been predicted by theory before it was observed experimentally. Additional experimental confirmation would be useful. The theoretical methods that are surveyed include mostly the Two-Particle Self-Consistent Approach, Variational Cluster Perturbation Theory (or variational cluster approximation), and Cellular Dynamical Mean-Field Theory.Comment: 32 pages, 51 figures. Slight modifications to text, figures and references. A PDF file with higher-resolution figures is available at http://www.physique.usherbrooke.ca/senechal/LTP-toc.pd

    Theory of Spin-Resolved Auger-Electron Spectroscopy from Ferromagnetic 3d-Transition Metals

    Full text link
    CVV Auger electron spectra are calculated for a multi-band Hubbard model including correlations among the valence electrons as well as correlations between core and valence electrons. The interest is focused on the ferromagnetic 3d-transition metals. The Auger line shape is calculated from a three-particle Green function. A realistic one-particle input is taken from tight-binding band-structure calculations. Within a diagrammatic approach we can distinguish between the \textit{direct} correlations among those electrons participating in the Auger process and the \textit{indirect} correlations in the rest system. The indirect correlations are treated within second-order perturbation theory for the self-energy. The direct correlations are treated using the valence-valence ladder approximation and the first-order perturbation theory with respect to valence-valence and core-valence interactions. The theory is evaluated numerically for ferromagnetic Ni. We discuss the spin-resolved quasi-particle band structure and the Auger spectra and investigate the influence of the core hole.Comment: LaTeX, 12 pages, 8 eps figures included, Phys. Rev. B (in press

    Influence of uncorrelated overlayers on the magnetism in thin itinerant-electron films

    Full text link
    The influence of uncorrelated (nonmagnetic) overlayers on the magnetic properties of thin itinerant-electron films is investigated within the single-band Hubbard model. The Coulomb correlation between the electrons in the ferromagnetic layers is treated by using the spectral density approach (SDA). It is found that the presence of nonmagnetic layers has a strong effect on the magnetic properties of thin films. The Curie temperatures of very thin films are modified by the uncorrelated overlayers. The quasiparticle density of states is used to analyze the results. In addition, the coupling between the ferromagnetic layers and the nonmagnetic layers is discussed in detail. The coupling depends on the band occupation of the nonmagnetic layers, while it is almost independent of the number of the nonmagnetic layers. The induced polarization in the nonmagnetic layers shows a long-range decreasing oscillatory behavior and it depends on the coupling between ferromagnetic and nonmagnetic layers.Comment: 9 pages, RevTex, 6 figures, for related work see: http://orion.physik.hu-berlin.d

    Lanczos algorithm with Matrix Product States for dynamical correlation functions

    Get PDF
    The density-matrix renormalization group (DMRG) algorithm can be adapted to the calculation of dynamical correlation functions in various ways which all represent compromises between computational efficiency and physical accuracy. In this paper we reconsider the oldest approach based on a suitable Lanczos-generated approximate basis and implement it using matrix product states (MPS) for the representation of the basis states. The direct use of matrix product states combined with an ex-post reorthogonalization method allows to avoid several shortcomings of the original approach, namely the multi-targeting and the approximate representation of the Hamiltonian inherent in earlier Lanczos-method implementations in the DMRG framework, and to deal with the ghost problem of Lanczos methods, leading to a much better convergence of the spectral weights and poles. We present results for the dynamic spin structure factor of the spin-1/2 antiferromagnetic Heisenberg chain. A comparison to Bethe ansatz results in the thermodynamic limit reveals that the MPS-based Lanczos approach is much more accurate than earlier approaches at minor additional numerical cost.Comment: final version 11 pages, 11 figure

    Mott transitions in correlated electron systems with orbital degrees of freedom

    Full text link
    Mott metal-insulator transitions in an M-fold orbitally degenerate Hubbard model are studied by means of a generalization of the linearized dynamical mean-field theory. The method allows for an efficient and reliable determination of the critical interaction U_c for any integer filling n and different M at zero temperature. For half-filling a linear dependence of U_c on M is found. Inclusion of the (full) Hund's rule exchange J results in a strong reduction of U_c. The transition turns out to change qualitatively from continuous for J=0 to discontinuous for any finite J

    Ferromagnetism and Temperature-Driven Reorientation Transition in Thin Itinerant-Electron Films

    Full text link
    The temperature-driven reorientation transition which, up to now, has been studied by use of Heisenberg-type models only, is investigated within an itinerant-electron model. We consider the Hubbard model for a thin fcc(100) film together with the dipole interaction and a layer-dependent anisotropy field. The isotropic part of the model is treated by use of a generalization of the spectral-density approach to the film geometry. The magnetic properties of the film are investigated as a function of temperature and film thickness and are analyzed in detail with help of the spin- and layer-dependent quasiparticle density of states. By calculating the temperature dependence of the second-order anisotropy constants we find that both types of reorientation transitions, from out-of-plane to in-plane (``Fe-type'') and from in-plane to out-of-plane (``Ni-type'') magnetization are possible within our model. In the latter case the inclusion of a positive volume anisotropy is vital. The reorientation transition is mediated by a strong reduction of the surface magnetization with respect to the inner layers as a function of temperature and is found to depend significantly on the total band occupation.Comment: 10 pages, 8 figures included (eps), Phys Rev B in pres

    Electron-correlation effects in appearance-potential spectra of Ni

    Full text link
    Spin-resolved and temperature-dependent appearance-potential spectra of ferromagnetic Nickel are measured and analyzed theoretically. The Lander self-convolution model which relates the line shape to the unoccupied part of the local density of states turns out to be insufficient. Electron correlations and orbitally resolved transition-matrix elements are shown to be essential for a quantitative agreement between experiment and theory.Comment: LaTeX, 6 pages, 2 eps figures included, Phys. Rev. B (in press
    • …
    corecore