62 research outputs found
Sub-Nyquist Field Trial Using Time Frequency Packed DP-QPSK Super-Channel Within Fixed ITU-T Grid
Sub-Nyquist time frequency packing technique was demonstrated for the first
time in a super channel field trial transmission over long-haul distances. The
technique allows a limited spectral occupancy even with low order modulation
formats. The transmission was successfully performed on a deployed Australian
link between Sydney and Melbourne which included 995 km of uncompensated SMF
with coexistent traffic. 40 and 100 Gb/s co-propagating channels were
transmitted together with the super-channel in a 50 GHz ITU-T grid without
additional penalty. The super-channel consisted of eight sub-channels with
low-level modulation format, i.e. DP-QPSK, guaranteeing better OSNR robustness
and reduced complexity with respect to higher order formats. At the receiver
side, coherent detection was used together with iterative maximum-a-posteriori
(MAP) detection and decoding. A 975 Gb/s DP-QPSK super-channel was successfully
transmitted between Sydney and Melbourne within four 50GHz WSS channels (200
GHz). A maximum potential SE of 5.58 bit/s/Hz was achieved with an OSNR=15.8
dB, comparable to the OSNR of the installed 100 Gb/s channels. The system
reliability was proven through long term measurements. In addition, by closing
the link in a loop back configuration, a potential SE*d product of 9254
bit/s/Hz*km was achieved
First demonstration of multi-vendor and multi-domain EON with S-BVT and control interoperability over Pan-European testbed
The operation of multi-domain and multi-vendor EONs can be achieved by interoperable Sliceable Bandwidth Variable Transponders, a GMPLS / BGP-LS-based control plane and a planning tool. This paper reports the first full demonstration and validation this end-to-end architecture
- …