9,061 research outputs found

    Temperature and pressure measurement techniques for an advanced turbine test facility

    Get PDF
    A high pressure, high-temperature turbine test facility constructed for use in turbine cooling research is described. Several recently developed temperature and pressure measuring techniques are used in this facility. The measurement techniques, their status, previous applications and some results are discussed. Noncontact surface temperature measurements are made by optical methods. Radiation pyrometry principles combined with photoelectric scanning are used for rotating components and infrared photography for stationary components. Contact (direct) temperature and pressure measurements on rotating components are expected to be handled with an 80 channel rotary data package which mounts on and rotates with the turbine shaft at speeds up to 17,500 rpm. The data channels are time-division multiplexed and converted to digital words in the data package. A rotary transformer couples power and digital data to and from the shaft

    Finite range corrections near a Feshbach resonance and their role in the Efimov effect

    Full text link
    We have measured the binding energy of 7^7Li Feshbach molecules deep into the non-universal regime by associating free atoms in a Bose-Einstein condensate by modulating the magnetic field. We extract the scattering length from these measurements, correcting for non-universal short-range effects using several different methods. We find that field-dependent effective range corrections agree well with the data. With this more precise determination of the scattering length vs. field we reanalyze our previous data on the location of atom loss features produced by the Efimov effect \cite{PollackSci09} and investigate effective range corrections to universal theory.Comment: Accepted for publication in Phys. Rev.

    Demonstration of the Zero-Crossing Phasemeter with a LISA Test-bed Interferometer

    Full text link
    The Laser Interferometer Space Antenna (LISA) is being designed to detect and study in detail gravitational waves from sources throughout the Universe such as massive black hole binaries. The conceptual formulation of the LISA space-borne gravitational wave detector is now well developed. The interferometric measurements between the sciencecraft remain one of the most important technological and scientific design areas for the mission. Our work has concentrated on developing the interferometric technologies to create a LISA-like optical signal and to measure the phase of that signal using commercially available instruments. One of the most important goals of this research is to demonstrate the LISA phase timing and phase reconstruction for a LISA-like fringe signal, in the case of a high fringe rate and a low signal level. We present current results of a test-bed interferometer designed to produce an optical LISA-like fringe signal previously discussed in the literature.Comment: find minor corrections in the CQG versio

    The Impact of Base Stacking on the Conformations and Electrostatics of Single-Stranded DNA

    Full text link
    Single-stranded DNA (ssDNA) is notable for its interactions with ssDNA binding proteins (SSBs) during fundamentally important biological processes including DNA repair and replication. Previous work has begun to characterize the conformational and electrostatic properties of ssDNA in association with SSBs. However, the conformational distributions of free ssDNA have been difficult to determine. To capture the vast array of ssDNA conformations in solution, we pair small angle X-ray scattering with novel ensemble fitting methods, obtaining key parameters such as the size, shape and stacking character of strands with different sequences. Complementary ion counting measurements using inductively coupled plasma atomic emission spectroscopy are employed to determine the composition of the ion atmosphere at physiological ionic strength. Applying this combined approach to poly dA and poly dT, we find that the global properties of these sequences are very similar, despite having vastly different propensities for single-stranded helical stacking. These results suggest that a relatively simple mechanism for the binding of ssDNA to non-specific SSBs may be at play, which explains the disparity in binding affinities observed for these systems

    A Demonstration of LISA Laser Communication

    Full text link
    Over the past few years questions have been raised concerning the use of laser communications links between sciencecraft to transmit phase information crucial to the reduction of laser frequency noise in the LISA science measurement. The concern is that applying medium frequency phase modulations to the laser carrier could compromise the phase stability of the LISA fringe signal. We have modified the table-top interferometer presented in a previous article by applying phase modulations to the laser beams in order to evaluate the effects of such modulations on the LISA science fringe signal. We have demonstrated that the phase resolution of the science signal is not degraded by the presence of medium frequency phase modulations.Comment: minor corrections found in the CQG versio

    Midinfrared spectral investigations of carbonates: Analysis of remotely sensed data

    Get PDF
    Recent airborne thermal infrared observations of Mars from the Kuiper Airborne Observatory (KAO) have provided evidence for the presence of carbonates, sulfates, and hydrates. Using the optical properties of calcite and anhydrite, it was estimated that CO3's and SO4's constituted about 1 to 3 and 10 to 15 wt. percent, repectively of the materials composing the atmospheric dust. Using the derived value as an estimate of total CO3 abundance, and making an assumption that the CO3's were uniformly distributed within the Martian regolith, it was estimated that such a CO3 reservoir could contain roughly 2 to 5 bars of CO2. While the results indicate that several volatile-bearing materials are present on Mars, the observations from the KAO are inherently limited in their ability to determine the spatial distributions of these materials. However, previous spacecraft observations of Mars provide both the spectral coverage necessary to identify these materials, as well as the potential for investigating their spatial variability. This has prompted us to pursue a reinvestigation of the Mariner 6 and 7 infrared spectrometer and Mariner 9 infrared interferometer spectrometer observations. The former data have been recently made available in digital format and calibration of wavelengths and intensities are almost complete. Additionally, we are pursuing the derivation of optical constants of more appropriate carbonates and sulfates

    Indigenous land in Australia: a quantitative assessment of Indigenous landholdings in 2000

    Get PDF
    This paper estimates the area of land held by Indigenous people in Australia in 2000. It details the legislation and programs that have lead to the accrual of land for Indigenous people in Australia since the concept of Indigenous ownership of land under Australian law, rather than the allocation of reserve lands, was first addressed in the mid 1960s. It is based on a literature review and data provided by a variety of government agencies and Indigenous organisations around Australia. Using this information, the paper estimates that Indigenous Australians either own, control or have management arrangements over land in the range of 16 to 18 per cent of the Australian continent. The lower range is based on reliable data whereas the higher range is speculative due to the fact that the aggregated area of many small landholdings has never been quantified. As the paper demonstrates, the types of tenures held by Indigenous Australians differ from jurisdiction to jurisdiction and within jurisdictions. This is a result not only of the federal system of government in Australia, where land management and administration is the role of the State or Territory governments, but also a product of different priorities and objectives set by Federal, State and Territory governments in addressing Indigenous peoples' aspirations for land. In some States and Territories, land rights regimes exist for lands to be claimed across the entire jurisdiction, while in other States and Territories land rights legislation is limited to the grant of specific parcels of land. The plethora of programs, statutes and government agencies involved in dealing with Indigenous land over the past decades has meant that, across Australia today, there is extreme diversity in the types of ownership, beneficiaries, tenures, property rights and governance structures available to Indigenous people. Indigenous landholdings in Australia in 2000 can be characterised as follows: most Indigenous land is located in the remote rangeland regions of the continent. There are many more Indigenous land parcels in the south-east of the continent; however these parcels are very small in area; about half of the aggregated area of Indigenous land in Australia is located in the Northern Territory as a result of successful claims under the Commonwealth's Aboriginal Land Rights (Northern Territory) Act 1976; the aggregated area of Indigenous land in Australia was yet to be influenced by land subject to native title recognition under the common law or the Native Title Act 1993; the area of land accrued by purchase with the assistance of Indigenous Land Acquisition programs is very small by comparison with land accrued by land rights legislation. However, the significance of the acquisition programs cannot be underestimated as they may be the only means by which Indigenous aspirations to land can be addressed in many parts of Australia. The paper also assesses the area of Indigenous land in each State and Territory. It details the programs and legislative frameworks of the Commonwealth, State and Territory governments which contribute to addressing Indigenous aspirations for land in each jurisdiction

    Models of the formation of the planets in the 47 UMa system

    Get PDF
    Formation of planets in the 47 UMa system is followed in an evolving protoplanetary disk composed of gas and solids. The evolution of the disk is calculated from an early stage, when all solids, assumed to be high-temperature silicates, are in the dust form, to the stage when most solids are locked in planetesimals. The simulation of planetary evolution starts with a solid embryo of ~1 Earth mass, and proceeds according to the core accretion -- gas capture model. Orbital parameters are kept constant, and it is assumed that the environment of each planet is not perturbed by the second planet. It is found that conditions suitable for both planets to form within several Myr are easily created, and maintained throughout the formation time, in disks with α≈0.01\alpha \approx 0.01. In such disks, a planet of 2.6 Jupiter masses (the minimum for the inner planet of the 47 UMa system) may be formed at 2.1 AU from the star in \~3 Myr, while a planet of 0.89 Jupiter masses (the minimum for the outer planet) may be formed at 3.95 AU from the star in about the same time. The formation of planets is possible as a result of a significant enhancement of the surface density of solids between 1.0 and 4.0 AU, which results from the evolution of a disk with an initially uniform gas-to-dust ratio of 167 and an initial radius of 40 AU.Comment: Accepted for publication in A&A. 10 pages, 10 figure

    Proceedings of the MECA Workshop on The Evoluation of the Martian Atmosphere

    Get PDF
    Topics addressed include: Mars' volatile budget; climatic implications of martian channels; bulk composition of Mars; accreted water inventory; evolution of CO2; dust storms; nonlinear frost albedo feedback on Mars; martian atmospheric evolution; effects of asteroidal and cometary impacts; and water exchange between the regolith and the atmosphere/cap system over obliquity timescales

    Explicit computations of Hida families via overconvergent modular symbols

    Full text link
    In [Pollack-Stevens 2011], efficient algorithms are given to compute with overconvergent modular symbols. These algorithms then allow for the fast computation of pp-adic LL-functions and have further been applied to compute rational points on elliptic curves (e.g. [Darmon-Pollack 2006, Trifkovi\'c 2006]). In this paper, we generalize these algorithms to the case of families of overconvergent modular symbols. As a consequence, we can compute pp-adic families of Hecke-eigenvalues, two-variable pp-adic LL-functions, LL-invariants, as well as the shape and structure of ordinary Hida-Hecke algebras.Comment: 51 pages. To appear in Research in Number Theory. This version has added some comments and clarifications, a new example, and further explanations of the previous example
    • …
    corecore