1,773 research outputs found

    D-wave correlated Critical Bose Liquids in two dimensions

    Get PDF
    We develop a description of a new quantum liquid phase of interacting bosons in 2d which possesses relative D-wave two-body correlations and which we call a D-wave Bose Liquid (DBL). The DBL has no broken symmetries, supports gapless boson excitations residing on "Bose surfaces" in momentum space, and exhibits power law correlations with continuously variable exponents. While the DBL can be constructed for bosons in the 2d continuum, the state only respects the point group symmetries of the square lattice. On the lattice the DBL respects all symmetries and does not require a particular filling. But lattice effects allow a second distinct phase, a quasi-local variant which we call a D-wave Local Bose Liquid (DLBL). Remarkably, the DLBL has short-range boson correlations and hence no Bose surfaces, despite sharing gapless excitations and other critical signatures with the DBL. Moreover, both phases are metals with a resistance that vanishes as a power of the temperature. We establish these results by constructing a class of many-particle wavefunctions for the DBL, which are time reversal invariant analogs of Laughlin's quantum Hall wavefunction for bosons at ν=1/2\nu=1/2. A gauge theory formulation leads to a simple mean field theory, and an N-flavor generalization enables incorporation of gauge field fluctuations to deduce the properties of the DBL/DLBL; various equal time correlation functions are in qualitative accord with the properties inferred from the wavefunctions. We also identify a promising Hamiltonian which might manifest the DBL or DLBL, and perform a variational study comparing to other competing phases. We suggest how the DBL wavefunction can be generalized to describe an itinerant non-Fermi liquid phase of electrons on the square lattice with a no double occupancy constraint, a D-wave metal phase.Comment: 33 pages, 17 figure

    Seeing the Invisible Axion in the Sparticle Spectrum

    Get PDF
    I describe how under favourable circumstances the invisible axion may manifest its existence at the LHC through the sparticle spectrum; in particular through a gluino \sim \ln (M_P/m_{3/2}) times heavier than other gauginos.Comment: 4 pages, REVTe

    Cosmic String Evolution in Higher Dimensions

    Full text link
    We obtain the equations of motion for cosmic strings in extensions of the 3+1 FRW model with extra dimensions. From these we derive a generalisation of the Velocity-dependent One-Scale (VOS) model for cosmic string network evolution which we apply, first, to a higher-dimensional isotropic D+1D+1 FRW model and, second, to a 3+1 FRW model with static flat extra dimensions. In the former case the string network does not achieve a scaling regime because of the diminishing rate of string intersections (D>3D>3), but this can be avoided in the latter case by considering compact, small extra dimensions, for which there is a reduced but still appreciable string intercommuting probability. We note that the velocity components lying in the three expanding dimensions are Hubble-damped, whereas those in the static extra dimensions are only very weakly damped. This leads to the pathological possibility, in principle, that string motion in the three infinite dimensions can come to a halt preventing the strings from intersecting, with the result that scaling is not achieved and the strings irreversibly dominate the early universe. We note criteria by which this can be avoided, notably if the spatial structure of the network becomes essentially three-dimensional, as is expected for string networks produced in brane inflation. Applying our model to a brane inflation setting, we find scaling solutions in which the effective 3D string motion does not necessarily stop, but it is slowed down because of the excitations trapped in the extra dimensions. These effects are likely to influence cosmic string network evolution for a long period after formation and we discuss their more general implications.Comment: 23 pages, 8 figures. Minor updates and notational clarification

    Topological Insulators and Superconductors from String Theory

    Full text link
    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and supercondutors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K-theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K-theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ\theta-term in various dimensions. This sheds light on topological insulators and superconductors beyond non-interacting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).Comment: 13 pages, 3 figures;references update

    Normal ordering and non(anti)commutativity in open super strings

    Get PDF
    Nonanticommutativity in an open super string moving in the presence of a background antisymmetric tensor field Bμν\mathcal{B}_{\mu \nu} is investigated in a conformal field theoretic approach, leading to nonanticommutative structures. In contrast to several discussions, in which boundary conditions are taken as Dirac constraints, we first obtain the mode algebra by using the newly proposed normal ordering, which satisfies both equations of motion and boundary conditions. Using these the anticommutator among the fermionic string coordinates is obtained. Interestingly, in contrast to the bosonic case, this new normal ordering plays an important role in uncovering the underlying nonanticommutative structure between the fermionic string coordinates. We feel that our approach is more transparent than the previous ones and the results we obtain match with the existing results in the literature.Comment: Comments 10 pages latex, accepted for publication in Physical Review

    Gravireggeons and transplanckian scattering in models with one extra dimension

    Full text link
    The inelastic scattering of the brane fields induced by tt-channel gravireggeons exchanges in the RS model with a small curvature κ\kappa is considered, and the imaginary part of the eikonal is analytically calculated. It is demonstrated that the results can be obtained from the corresponding formulae previously derived in the ADD model with one extra dimension of the size RcR_c by formal replacement Rc(πκ)1R_c \to (\pi \kappa)^{-1}. The inelastic cross section for the scattering of ultra-high neutrino off the nucleon is numerically estimated for the case κMˉ51\kappa \ll \bar{M}_5 \sim 1 TeV, where Mˉ5\bar{M}_5 is a reduced Planck scale in five warped dimensions.Comment: 17 pages, LaTeX2e, 3 eps figure

    Supersymmetric Pair Correlation Function of Wilson Loops

    Get PDF
    We give a path integral derivation of the annulus diagram in a supersymmetric theory of open and closed strings with Dbranes. We compute the pair correlation function of Wilson loops in the generic weakly coupled supersymmetric flat spacetime background with Dbranes. We obtain a -u^4/r^9 potential between heavy nonrelativistic sources in a supersymmetric gauge theory at short distances.Comment: 18 pages, Revte

    Dual Actions for Born-Infeld and Dp-Brane Theories

    Full text link
    Dual actions with respect to U(1) gauge fields for Born-Infeld and DpDp-brane theories are reexamined. Taking into account an additional condition, i.e. a corollary to the field equation of the auxiliary metric, one obtains an alternative dual action that does not involve the infinite power series in the auxiliary metric given by ref. \cite{s14}, but just picks out the first term from the series formally. New effective interactions of the theories are revealed. That is, the new dual action gives rise to an effective interaction in terms of one interaction term rather than infinite terms of different (higher) orders of interactions physically. However, the price paid for eliminating the infinite power series is that the new action is not quadratic but highly nonlinear in the Hodge dual of a (p1)(p-1)-form field strength. This non-linearity is inevitable to the requirement the two dual actions are equivalent.Comment: v1: 11 pages, no figures; v2: explanation of effective interactions added; v3: concision made; v4: minor modification mad

    New twist field couplings from the partition function for multiply wrapped D-branes

    Full text link
    We consider toroidal compactifications of bosonic string theory with particular regard to the phases (cocycles) necessary for a consistent definition of the vertex operators, the boundary states and the T-duality rules. We use these ingredients to compute the planar multi-loop partition function describing the interaction among magnetized or intersecting D-branes, also in presence of open string moduli. It turns out that unitarity in the open string channel crucially depends on the presence of the cocycles. We then focus on the 2-loop case and study the degeneration limit where this partition function is directly related to the tree-level 3-point correlators between twist fields. These correlators represent the main ingredient in the computation of Yukawa couplings and other terms in the effective action for D-brane phenomenological models. By factorizing the 2-loop partition function we are able to compute the 3-point couplings for abelian twist fields on generic non-factorized tori, thus generalizing previous expressions valid for the 2-torus.Comment: 36 pages, 1 figure; v2: typos corrected, proof in the Appendix improve

    Gauge and gravitational interactions of non-BPS D-particles

    Get PDF
    We study the gauge and gravitational interactions of the stable non-BPS D-particles of the type I string theory. The gravitational interactions are obtained using the boundary state formalism while the SO(32) gauge interactions are determined by evaluating disk diagrams with suitable insertions of boundary changing (or twist) operators. In particular the gauge coupling of a D-particle is obtained from a disk with two boundary components produced by the insertion of two twist operators. We also compare our results with the amplitudes among the non-BPS states of the heterotic string which are dual to the D-particles. After taking into account the known duality and renormalization effects, we find perfect agreement, thus confirming at a non-BPS level the expectations based on the heterotic/type I duality.Comment: LaTeX File, 29 pages, 3 figures, two references added. Final version to be published in Nucl. Phys.
    corecore