5,002 research outputs found
Invariant expectations and vanishing of bounded cohomology for exact groups
We study exactness of groups and establish a characterization of exact groups
in terms of the existence of a continuous linear operator, called an invariant
expectation, whose properties make it a weak counterpart of an invariant mean
on a group. We apply this operator to show that exactness of a finitely
generated group implies the vanishing of the bounded cohomology of with
coefficients in a new class of modules, which are defined using the Hopf
algebra structure of .Comment: Final version, to appear in the Journal of Topology and Analysi
Sub-ohmic two-level system representation of the Kondo effect
It has been recently shown that the particle-hole symmetric Anderson impurity
model can be mapped onto a slave-spin theory without any need of
additional constraints. Here we prove by means of Numerical Renormalization
Group that the slave-spin behaves in this model like a two-level system coupled
to a sub-ohmic dissipative environment. It follows that the symmetry gets
spontaneously broken at zero temperature, which we find can be identified with
the on-set of Kondo coherence, being the Kondo temperature proportional to the
square of the order parameter. Since the model is numerically solvable, the
results are very enlightening on the role of quantum fluctuations beyond mean
field in the context of slave-boson approaches to correlated electron models,
an issue that has been attracting interest since the 80's. Finally, our results
suggest as a by-product that the paramagnetic metal phase of the Hubbard model
at half-filling, in infinite coordination lattices and at zero temperature, as
described for instance by Dynamical Mean Field Theory, corresponds to a
slave-spin theory with a spontaneous breakdown of a local gauge symmetry.Comment: 4 pages, 5 figure
Higgs and Z-boson production with a jet veto
We derive first next-to-next-to-leading logarithmic resummations for jet-veto
efficiencies in Higgs and Z-boson production at hadron colliders. Matching with
next-to-next-to-leading order results allows us to provide a range of
phenomenological predictions for the LHC, including cross-section results,
detailed uncertainty estimates and comparisons to current widely-used tools.Comment: 6 pages and 2 figures, plus 8 pages and 2 figures of supplemental
material. v2 contains additional references and small textual change
Quantum State Tomography Using Successive Measurements
We describe a quantum state tomography scheme which is applicable to a system
described in a Hilbert space of arbitrary finite dimensionality and is
constructed from sequences of two measurements. The scheme consists of
measuring the various pairs of projectors onto two bases --which have no
mutually orthogonal vectors--, the two members of each pair being measured in
succession. We show that this scheme implies measuring the joint
quasi-probability of any pair of non-degenerate observables having the two
bases as their respective eigenbases. The model Hamiltonian underlying the
scheme makes use of two meters initially prepared in an arbitrary given quantum
state, following the ideas that were introduced by von Neumann in his theory of
measurement.Comment: 12 Page
Statistical study of the conductance and shot noise in open quantum-chaotic cavities: Contribution from whispering gallery modes
In the past, a maximum-entropy model was introduced and applied to the study
of statistical scattering by chaotic cavities, when short paths may play an
important role in the scattering process. In particular, the validity of the
model was investigated in relation with the statistical properties of the
conductance in open chaotic cavities. In this article we investigate further
the validity of the maximum-entropy model, by comparing the theoretical
predictions with the results of computer simulations, in which the Schroedinger
equation is solved numerically inside the cavity for one and two open channels
in the leads; we analyze, in addition to the conductance, the zero-frequency
limit of the shot-noise power spectrum. We also obtain theoretical results for
the ensemble average of this last quantity, for the orthogonal and unitary
cases of the circular ensemble and an arbitrary number of channels. Generally
speaking, the agreement between theory and numerics is good. In some of the
cavities that we study, short paths consist of whispering gallery modes, which
were excluded in previous studies. These cavities turn out to be all the more
interesting, as it is in relation with them that we found certain systematic
discrepancies in the comparison with theory. We give evidence that it is the
lack of stationarity inside the energy interval that is analyzed, and hence the
lack of ergodicity that gives rise to the discrepancies. Indeed, the agreement
between theory and numerical simulations is improved when the energy interval
is reduced to a point and the statistics is then collected over an ensemble. It
thus appears that the maximum-entropy model is valid beyond the domain where it
was originally derived. An understanding of this situation is still lacking at
the present moment.Comment: Revised version, minor modifications, 28 pages, 7 figure
Adsorption of rare-gas atoms on Cu(111) and Pb(111) surfaces by van der Waals-corrected Density Functional Theory
The DFT/vdW-WF method, recently developed to include the Van der Waals
interactions in Density Functional Theory (DFT) using the Maximally Localized
Wannier functions, is applied to the study of the adsorption of rare-gas atoms
(Ne, Ar, Kr, and Xe) on the Cu(111) and Pb(111) surfaces, at three
high-symmetry sites. We evaluate the equilibrium binding energies and
distances, and the induced work-function changes and dipole moments. We find
that, for Ne, Ar, and Kr on the Cu(111) surface the different adsorption
configurations are characterized by very similar binding energies, while the
favored adsorption site for Xe on Cu(111) is on top of a Cu atom, in agreement
with previous theoretical calculations and experimental findings, and in common
with other close-packed metal surfaces. Instead, the favored site is always the
hollow one on the Pb(111) surface, which therefore represents an interesting
system where the investigation of high-coordination sites is possible.
Moreover, the Pb(111) substrate is subject, upon rare-gas adsorption, to a
significantly smaller change in the work function (and to a correspondingly
smaller induced dipole moment) than Cu(111). The role of the chosen reference
DFT functional and of different Van der Waals corrections, and their dependence
on different rare-gas adatoms, are also discussed
- …