5,002 research outputs found

    Invariant expectations and vanishing of bounded cohomology for exact groups

    Full text link
    We study exactness of groups and establish a characterization of exact groups in terms of the existence of a continuous linear operator, called an invariant expectation, whose properties make it a weak counterpart of an invariant mean on a group. We apply this operator to show that exactness of a finitely generated group GG implies the vanishing of the bounded cohomology of GG with coefficients in a new class of modules, which are defined using the Hopf algebra structure of 1(G)\ell_1(G).Comment: Final version, to appear in the Journal of Topology and Analysi

    Sub-ohmic two-level system representation of the Kondo effect

    Full text link
    It has been recently shown that the particle-hole symmetric Anderson impurity model can be mapped onto a Z2Z_2 slave-spin theory without any need of additional constraints. Here we prove by means of Numerical Renormalization Group that the slave-spin behaves in this model like a two-level system coupled to a sub-ohmic dissipative environment. It follows that the Z2Z_2 symmetry gets spontaneously broken at zero temperature, which we find can be identified with the on-set of Kondo coherence, being the Kondo temperature proportional to the square of the order parameter. Since the model is numerically solvable, the results are very enlightening on the role of quantum fluctuations beyond mean field in the context of slave-boson approaches to correlated electron models, an issue that has been attracting interest since the 80's. Finally, our results suggest as a by-product that the paramagnetic metal phase of the Hubbard model at half-filling, in infinite coordination lattices and at zero temperature, as described for instance by Dynamical Mean Field Theory, corresponds to a slave-spin theory with a spontaneous breakdown of a local Z2Z_2 gauge symmetry.Comment: 4 pages, 5 figure

    Higgs and Z-boson production with a jet veto

    Get PDF
    We derive first next-to-next-to-leading logarithmic resummations for jet-veto efficiencies in Higgs and Z-boson production at hadron colliders. Matching with next-to-next-to-leading order results allows us to provide a range of phenomenological predictions for the LHC, including cross-section results, detailed uncertainty estimates and comparisons to current widely-used tools.Comment: 6 pages and 2 figures, plus 8 pages and 2 figures of supplemental material. v2 contains additional references and small textual change

    Quantum State Tomography Using Successive Measurements

    Full text link
    We describe a quantum state tomography scheme which is applicable to a system described in a Hilbert space of arbitrary finite dimensionality and is constructed from sequences of two measurements. The scheme consists of measuring the various pairs of projectors onto two bases --which have no mutually orthogonal vectors--, the two members of each pair being measured in succession. We show that this scheme implies measuring the joint quasi-probability of any pair of non-degenerate observables having the two bases as their respective eigenbases. The model Hamiltonian underlying the scheme makes use of two meters initially prepared in an arbitrary given quantum state, following the ideas that were introduced by von Neumann in his theory of measurement.Comment: 12 Page

    Statistical study of the conductance and shot noise in open quantum-chaotic cavities: Contribution from whispering gallery modes

    Full text link
    In the past, a maximum-entropy model was introduced and applied to the study of statistical scattering by chaotic cavities, when short paths may play an important role in the scattering process. In particular, the validity of the model was investigated in relation with the statistical properties of the conductance in open chaotic cavities. In this article we investigate further the validity of the maximum-entropy model, by comparing the theoretical predictions with the results of computer simulations, in which the Schroedinger equation is solved numerically inside the cavity for one and two open channels in the leads; we analyze, in addition to the conductance, the zero-frequency limit of the shot-noise power spectrum. We also obtain theoretical results for the ensemble average of this last quantity, for the orthogonal and unitary cases of the circular ensemble and an arbitrary number of channels. Generally speaking, the agreement between theory and numerics is good. In some of the cavities that we study, short paths consist of whispering gallery modes, which were excluded in previous studies. These cavities turn out to be all the more interesting, as it is in relation with them that we found certain systematic discrepancies in the comparison with theory. We give evidence that it is the lack of stationarity inside the energy interval that is analyzed, and hence the lack of ergodicity that gives rise to the discrepancies. Indeed, the agreement between theory and numerical simulations is improved when the energy interval is reduced to a point and the statistics is then collected over an ensemble. It thus appears that the maximum-entropy model is valid beyond the domain where it was originally derived. An understanding of this situation is still lacking at the present moment.Comment: Revised version, minor modifications, 28 pages, 7 figure

    Adsorption of rare-gas atoms on Cu(111) and Pb(111) surfaces by van der Waals-corrected Density Functional Theory

    Full text link
    The DFT/vdW-WF method, recently developed to include the Van der Waals interactions in Density Functional Theory (DFT) using the Maximally Localized Wannier functions, is applied to the study of the adsorption of rare-gas atoms (Ne, Ar, Kr, and Xe) on the Cu(111) and Pb(111) surfaces, at three high-symmetry sites. We evaluate the equilibrium binding energies and distances, and the induced work-function changes and dipole moments. We find that, for Ne, Ar, and Kr on the Cu(111) surface the different adsorption configurations are characterized by very similar binding energies, while the favored adsorption site for Xe on Cu(111) is on top of a Cu atom, in agreement with previous theoretical calculations and experimental findings, and in common with other close-packed metal surfaces. Instead, the favored site is always the hollow one on the Pb(111) surface, which therefore represents an interesting system where the investigation of high-coordination sites is possible. Moreover, the Pb(111) substrate is subject, upon rare-gas adsorption, to a significantly smaller change in the work function (and to a correspondingly smaller induced dipole moment) than Cu(111). The role of the chosen reference DFT functional and of different Van der Waals corrections, and their dependence on different rare-gas adatoms, are also discussed
    corecore