3,891 research outputs found
Ultra Fast Nonlinear Optical Tuning of Photonic Crystal Cavities
We demonstrate fast (up to 20 GHz), low power (5 ) modulation of
photonic crystal (PC) cavities in GaAs containing InAs quantum dots. Rapid
modulation through blue-shifting of the cavity resonance is achieved via free
carrier injection by an above-band picosecond laser pulse. Slow tuning by
several linewidths due to laser-induced heating is also demonstrated
W mass and Triple Gauge Couplings at Tevatron
On behalf of CDF and D0 CollaborationsInternational audienceThe W mass is a crucial parameter in the Standard Model (SM) of particle physics, providing constraints on the mass of the Higgs boson as well as on new physics models via quantum loop corrections. On the other hand, any deviation of the triple gauge boson couplings (TGC) from their values predicted by the SM would be also an indication for new physics. We present recent measurements on W boson mass and searches for anomalous TGC (aTGC) in Wγ, Zγ, WW, WZ and ZZ at Fermilab Tevatron both by CDF and DØ Collaborations. The CDF Collaboration has measured the W boson mass using data corresponding to 2.2 fb−1 of integrated luminosity. The measurement, performed using electron and muon decays of W boson, yields a mass of MW = 80387 ± 19 MeV. The DØ Collaboration has measured MW = 80367 ± 26 MeV with data corresponding to 4.3 fb−1 of integrated luminosity in the channel W → ev. The combination with an earlier DØ result, using independant data sample at 1 fb−1 of integrated luminosity, yields MW = 80375 ± 23 MeV. The limits on anomalous TGCs parameters are consistent with the SM expectations
W and Z physics at TeVatron
14 pages, XXV Physics in Collision "PIC05", Prague, July 06-09 2005, On behalf of the CDF and D0 Collaborations - On behalf of the CDF and D0 CollaborationsElectroweak measurements performed by CDF and D0 are reported, corresponding to data collected at the centre-of-mass energy of 1.96 TeV with approximately a luminosity of . We present measurements of W and Z cross sections and decay asymmetries, recent results in diboson physics with new limits on anomalous couplings, preliminary results on the direct determination of the W width, and preliminary studies for the W mass measurement
Radiative cascades in charged quantum dots
We measured, for the first time, two photon radiative cascades due to
sequential recombination of quantum dot confined electron hole pairs in the
presence of an additional spectator charge carrier. We identified direct, all
optical cascades involving spin blockaded intermediate states, and indirect
cascades, in which non radiative relaxation precedes the second recombination.
Our measurements provide also spin dephasing rates of confined carriers.Comment: 4 pages, 3 figure
Anisotropic magneto-Coulomb effect versus spin accumulation in a ferromagnetic single-electron device
We investigate the magneto-transport characteristics of nanospintronics
single-electron devices. The devices consist of single non-magnetic
nano-objects (nanometer size nanoparticles of Al or Cu) connected to Co
ferromagnetic leads. The comparison with simulations allows us attribute the
observed magnetoresistance to either spin accumulation or anisotropic
magneto-Coulomb effect (AMC), two effects with very different origins. The fact
that the two effects are observed in similar samples demonstrates that a
careful analysis of Coulomb blockade and magnetoresistance behaviors is
necessary in order to discriminate them in magnetic single-electron devices. As
a tool for further studies, we propose a simple way to determine if spin
transport or AMC effect dominates from the Coulomb blockade I-V curves of the
spintronics device
Semiconductor quantum dot - a quantum light source of multicolor photons with tunable statistics
We investigate the intensity correlation properties of single photons emitted
from an optically excited single semiconductor quantum dot. The second order
temporal coherence function of the photons emitted at various wavelengths is
measured as a function of the excitation power. We show experimentally and
theoretically, for the first time, that a quantum dot is not only a source of
correlated non-classical monochromatic photons but is also a source of
correlated non-classical \emph{multicolor} photons with tunable correlation
properties. We found that the emitted photon statistics can be varied by the
excitation rate from a sub-Poissonian one, where the photons are temporally
antibunched, to super-Poissonian, where they are temporally bunched.Comment: 4 pages, 2 figure
Geometry of Valley Growth
Although amphitheater-shaped valley heads can be cut by groundwater flows
emerging from springs, recent geological evidence suggests that other processes
may also produce similar features, thus confounding the interpretations of such
valley heads on Earth and Mars. To better understand the origin of this
topographic form we combine field observations, laboratory experiments,
analysis of a high-resolution topographic map, and mathematical theory to
quantitatively characterize a class of physical phenomena that produce
amphitheater-shaped heads. The resulting geometric growth equation accurately
predicts the shape of decimeter-wide channels in laboratory experiments,
100-meter wide valleys in Florida and Idaho, and kilometer wide valleys on
Mars. We find that whenever the processes shaping a landscape favor the growth
of sharply protruding features, channels develop amphitheater-shaped heads with
an aspect ratio of pi
- …
