5,798 research outputs found
Model selection and hypothesis testing for large-scale network models with overlapping groups
The effort to understand network systems in increasing detail has resulted in
a diversity of methods designed to extract their large-scale structure from
data. Unfortunately, many of these methods yield diverging descriptions of the
same network, making both the comparison and understanding of their results a
difficult challenge. A possible solution to this outstanding issue is to shift
the focus away from ad hoc methods and move towards more principled approaches
based on statistical inference of generative models. As a result, we face
instead the more well-defined task of selecting between competing generative
processes, which can be done under a unified probabilistic framework. Here, we
consider the comparison between a variety of generative models including
features such as degree correction, where nodes with arbitrary degrees can
belong to the same group, and community overlap, where nodes are allowed to
belong to more than one group. Because such model variants possess an
increasing number of parameters, they become prone to overfitting. In this
work, we present a method of model selection based on the minimum description
length criterion and posterior odds ratios that is capable of fully accounting
for the increased degrees of freedom of the larger models, and selects the best
one according to the statistical evidence available in the data. In applying
this method to many empirical unweighted networks from different fields, we
observe that community overlap is very often not supported by statistical
evidence and is selected as a better model only for a minority of them. On the
other hand, we find that degree correction tends to be almost universally
favored by the available data, implying that intrinsic node proprieties (as
opposed to group properties) are often an essential ingredient of network
formation.Comment: 20 pages,7 figures, 1 tabl
Modeling sequences and temporal networks with dynamic community structures
In evolving complex systems such as air traffic and social organizations,
collective effects emerge from their many components' dynamic interactions.
While the dynamic interactions can be represented by temporal networks with
nodes and links that change over time, they remain highly complex. It is
therefore often necessary to use methods that extract the temporal networks'
large-scale dynamic community structure. However, such methods are subject to
overfitting or suffer from effects of arbitrary, a priori imposed timescales,
which should instead be extracted from data. Here we simultaneously address
both problems and develop a principled data-driven method that determines
relevant timescales and identifies patterns of dynamics that take place on
networks as well as shape the networks themselves. We base our method on an
arbitrary-order Markov chain model with community structure, and develop a
nonparametric Bayesian inference framework that identifies the simplest such
model that can explain temporal interaction data.Comment: 15 Pages, 6 figures, 2 table
- …