114 research outputs found

    Consumed tectonic plates in Southeast Asia: Markers from the Mesozoic to early Cenozoic stratigraphic units in the northern and central Philippines

    Get PDF
    Tectonic reconstruction models of Southeast Asia all invoke in the early Cenozoic the collision of Mesozoic oceanic plates, which have been fragmented, consumed along subduction zones or emplaced onto the overriding plate. However, with marked variations in these models, we reinvestigate the tectonic evolutionary landscape of Southeast Asia through the lens of Philippine geology. In particular, we present revisions to the more recent models by adopting the unique approach of integrating data that we have gathered for the past 17 years from the Upper Mesozoic to Lower Cenozoic stratigraphic formations in northern and central Philippines. These formations, which resulted mainly from submarine mass transport processes, evolved in response to early arc-related processes of oblique subduction, frontal wedge deformation, terrane accretion and strike slip faulting. Additional key constraints for the revisions include: (1) the timing of early Cenozoic magmatism in eastern Luzon; (2) the spatial distribution of the Upper Mesozoic to Lower Cenozoic sedimentary formations with respect to other key features (e.g. distribution of Mesozoic ophiolite fragment and continent-derived rocks) in the Philippine arc; (3) the paleolatitudinal position of Luzon and surrounding regions and; (4) the movement of the surrounding plates since the Late Mesozoic. In revising previous models, a subduction zone (proto-East Luzon Trough) separating Benham Plateau and the Philippine arc was placed to explain the spatial distribution of Eocene arc-related formational units and Mesozoic ophiolite materials comprising the accretionary complex east of Luzon at ~40 Ma period. During this time, Luzon was modeled at the southern margin of the East Asia Sea or the proto-Philippine Sea Plate. Mesozoic ophiolitic complexes that line the eastern Philippine arc as well as the ophiolitic and pelagic limestone and chert fragments included in the arc-derived, Eocene formations in Luzon could very well be traces of the now consumed East Asia Sea-proto-Philippine Sea Plate. Within the same period, we modified the Palawan Microcontinental Block (PCB), positioned at the trailing edge of the proto-South China Sea to include the whole Mindoro island and the Romblon Island Group in Central Philippines. Pieces of the consumed Izanagi Plate, the proto-South China Sea and continental-derived sediments from Asia mainland are reflected in the Mesozoic metamorphic rocks and the Eocene sedimentary formation in western Mindoro. Finally, we model Cebu, Bohol and Negros islands in Central Philippines as being at the leading oceanic edge of the Indo-Australian Plate during the early Cenozoic. With the northward movement of the Indo-Australian plate and the trench roll back of the southern margins of the Philippine Sea Plate, the accretion of the Cretaceous arc-related rocks of Cebu, Bohol and Negros onto the Philippine arc by the end of Eocene or early Oligocene becomes a possibility

    Epithermal Mineralization of the Bonanza-Sandy Vein System, Masara Gold District, Mindanao, Philippines

    Get PDF
    The Masara Gold District in southeastern Mindanao island is an area of prolific hydrothermal copper and gold mineralization. This study documents the mineralization characteristics of the NW-trending Bonanza-Sandy epithermal veins to constrain possible hydrothermal fluid sources and ore-forming mechanisms. Epithermal mineralization in the NW veins is divided into three main stages: Stage 1 - massive quartz-sulfide; Stage 2 - massive to amorphous quartz-carbonate (calcite); and Stage 3 - colloform-cockade quartz-carbonate (bladed rhodochrosite). Stage 1 is the main gold mineralization phase, with chalcopyrite, pyrite, sphalerite and galena occurring with native gold and tellurides. Stages 2 and 3 contain invisible gold in the sphalerite, galena, pyrite and chalcopyrite. The deposit exhibits mineralization characteristics typical of intermediate sulfidation epithermal deposits based on the dominant chalcopyrite-pyrite mineral assemblage; illite-muscovite-chlorite alteration mineralogy that point to neutral pH conditions; and sphalerite composition of 2.26 to 8.72 mol% FeS in Stage 1 and 0.55 to 1.13 mol% FeS in Stage 2. The K-Ar age date of illite separates from highly altered diorite porphyry of the Lamingag Intrusive Complex yielded an Early Pliocene age (5.12 ± 0.16 Ma). Hydrothermal fluid exsolved from the magma that formed the Lamingag Intrusive Complex probably formed the ore-forming Stage 1 veins. Stages 2 and 3 involved the deposition of quartz and carbonate veins possibly by boiling hydrothermal fluids. Precious and base metal deposition was controlled by the Masara Fault Zone. Exploration markers for gold mineralization in the Masara Gold District and vicinity include the presence of Lamingag Intrusive Complex and massive sulfide veins

    Mesozoic rock suites along western Philippines: Exposed proto-South China Sea fragments?

    Get PDF
    An ancient oceanic crustal leading edge east of mainland Asia, the proto-South China Sea crust, must have existed during the Mesozoic based on tectonic reconstructions that accounted for the presence of subducted slabs in the lower mantle and the exposed oceanic lithospheric fragments strewn in the Philippine and Bornean regions. Along the western seaboard of the Philippine archipelago, numerous Mesozoic ophiolites and associated lithologies do not appear to be genetically associated with the younger Paleogene-Neogene ocean basins that currently surround the islands. New sedimentological, paleomagnetic, paleontological, and isotopic age data that we generated are presented here, in combination with our previous results and those of others, to reassess the geological make-up of the western Philippine island arc system. We believe that the oceanic lithospheric fragments, associated melanges, and sedimentary rocks in this region are exhumed slivers of the proto-South China Sea ocean plate

    Slab rollback and microcontinent subduction in the evolution of the Zambales Ophiolite Complex (Philippines) : A review

    Get PDF
    New radiolarian ages show that the island arc-related Acoje block of the Zambales Ophiolite Complex is possibly of Late Jurassic to Early Cretaceous age. Radiometric dating of its plutonic and volcanic-hypabyssal rocks yielded middle Eocene ages. On the other hand, the paleontological dating of the sedimentary carapace of the transitional mid-ocean ridge – island arc affiliated Coto block of the ophiolite complex, together with isotopic age datings of its dikes and mafic cumulate rocks, also yielded Eocene ages. This offers the possibility that the Zambales Ophiolite Complex could have: (1) evolved from a Mesozoic arc (Acoje block) that split to form a Cenozoic back-arc basin (Coto block), (2) through faulting, structurally juxtaposed a Mesozoic oceanic crust with a younger Cenozoic lithospheric fragment or (3) through the interplay of slab rollback, slab break-off and, at a later time, collision with a microcontinent fragment, caused the formation of an island arc-related ophiolite block (Acoje) that migrated trench-ward resulting into the generation of a back-arc basin (Coto block) with a limited subduction signature. This Meso-Cenozoic ophiolite complex is compared with the other oceanic lithosphere fragments along the western seaboard of the Philippines in the context of their evolution in terms of their recognized environments of generation

    Longitudinal Changes of Mineral Concentrations in Preterm and Term Human Milk from Lactating Swiss Women.

    Get PDF
    <b></b> An adequate mineral supply to preterm infants is essential for normal growth and development. This study aimed to compare the mineral contents of human milk (HM) from healthy mothers of preterm (28-32 weeks) and full term (>37 weeks) infants. Samples were collected weekly for eight weeks for the term group (n = 34) and, biweekly up to 16 weeks for the preterm group (n = 27). Iron, zinc, selenium, copper, iodine, calcium, magnesium, phosphorus, potassium, and sodium were quantitatively analyzed by Inductively Coupled Plasma-Mass Spectrometry. The mineral contents of both HM showed parallel compositional changes over the period of lactation, with occasional significant differences when compared at the same postpartum age. However, when the comparisons were performed at an equivalent postmenstrual age, preterm HM contained less zinc and copper from week 39 to 48 (p < 0.002) and less selenium from week 39 to 44 (p < 0.002) than term HM. This translates into ranges of differences (min-max) of 53% to 78%, 30% to 72%, and 11% to 33% lower for zinc, copper, and selenium, respectively. These data provide comprehensive information on the temporal changes of ten minerals in preterm HM and may help to increase the accuracy of the mineral fortification of milk for preterm consumption

    Deciding Together?:Best Interests and Shared Decision-Making in Paediatric Intensive Care

    Get PDF
    In the western healthcare, shared decision making has become the orthodox approach to making healthcare choices as a way of promoting patient autonomy. Despite the fact that the autonomy paradigm is poorly suited to paediatric decision making, such an approach is enshrined in English common law. When reaching moral decisions, for instance when it is unclear whether treatment or non-treatment will serve a child’s best interests, shared decision making is particularly questionable because agreement does not ensure moral validity. With reference to current common law and focusing on intensive care practice, this paper investigates what claims shared decision making may have to legitimacy in a paediatric intensive care setting. Drawing on key texts, I suggest these identify advantages to parents and clinicians but not to the child who is the subject of the decision. Without evidence that shared decision making increases the quality of the decision that is being made, it appears that a focus on the shared nature of a decision does not cohere with the principle that the best interests of the child should remain paramount. In the face of significant pressures toward the displacement of the child’s interests in a shared decision, advantages of a shared decision to decisional quality require elucidation. Although a number of arguments of this nature may have potential, should no such advantages be demonstrable we have cause to revise our commitment to either shared decision making or the paramountcy of the child in these circumstances
    corecore