324 research outputs found

    Pairwise dwarf galaxy formation and galaxy downsizing: some clues from extremely metal-poor Blue Compact Dwarf galaxies

    Full text link
    Some of the extremely metal-poor Blue Compact Dwarf galaxies (XBCDs) in the nearby universe form galaxy pairs with remarkably similar properties. This fact points to an intriguing degree of synchronicity in the formation history of these binary dwarf galaxies and raises the question as to whether some of them form and co-evolve pairwise (or in loose galaxy groups), experiencing recurrent mild interactions and minor tidally induced star formation episodes throughout their evolution. We argue that this hypothesis offers a promising conceptual framework for the exploration of the retarded previous evolution and recent dominant formation phase of XBCDs.Comment: To appear in the proceedings of the JENAM 2010 Symposium "Dwarf Galaxies: Keys to Galaxy Formation and Evolution" (Lisbon, 9-10 September 2010), P. Papaderos, S. Recchi, G. Hensler (eds.), Springer Verlag (2011), in pres

    Chandra Observations of the Three Most Metal-Deficient Blue Compact Dwarf Galaxies known in the Local Universe, SBS 0335-052, SBS 0335-052W, and I Zw 18

    Full text link
    We present an X-ray study of the three most metal-deficient blue compact dwarf (BCD) galaxies known in the local Universe, based on deep Chandra observations of SBS 0335-052 (0.025 solar abundance), SBS 0335-052W (0.02 solar abundance) and I Zw 18 (0.02 solar abundance). All three are detected, with more than 90% of their X-ray emission arising from point-like sources. The 0.5-10.0 keV luminosities of these point sources are in the range (1.3-8.5)x1e39 erg/s. We interpret them to be single or a collection of high-mass X-ray binaries, the luminosities of which may have been enhanced by the low metallicity of the gas. There are hints of faint extended diffuse X-ray emission in both SBS 0335-052 and I Zw 18, probably associated with the superbubbles visible in both BCDs. The spectrum of I Zw 18 shows a OVIII hydrogen-like emission line. The best spectral fit gives an O overabundance of the gas in the X-ray point source by a factor of ~7 with respect to the Sun, or a factor of ~350 with respect to the O abundance determined for the HII region.Comment: emulateapj.cls used, 7 pages, 7 figures + 1 table, accepted for publication in Ap

    SBS 0335-052E+W: deep VLT/FORS+UVES spectroscopy of the pair of the lowest-metallicity blue compact dwarf galaxies

    Full text link
    (abridged) We present deep archival VLT/FORS1+UVES spectroscopic observations of the system of two blue compact dwarf (BCD) galaxies SBS 0335-052E and SBS 0335-052W. Our aim is to derive element abundances in different HII regions of this unique system of galaxies and to study spatial abundance variations. We determine abundances of helium, nitrogen, oxygen, neon, sulfur, chlorine, argon and iron. The oxygen abundance in the brighter eastern galaxy varies in the range 7.11 to 7.32 in different HII regions supporting previous findings and suggesting the presence of oxygen abundance variations on spatial scales of ~1-2 kpc. The oxygen abundance in the brightest region No.1 of SBS 0335-052W is 7.22+/-0.07, consistent with previous determinations.Three other HII regions are much more metal-poor with an unprecedently low oxygen abundance of 12+logO/H=7.01+/-0.07 (region No.2), 6.98+/-0.06 (region No.3), and 6.86+/-0.14 (region No.4). These are the lowest oxygen abundances ever derived in emission-line galaxies. Helium abundances derived for the brightest HII regions of both galaxies are mutually consistent. We derive weighted mean He mass fractions of 0.2485+/-0.0012 and 0.2514+/-0.0012 for two different sets of HeI emissivities. The N/O abundance ratio in both galaxies is slightly higher than that derived for other BCDs with 12+logO/H<7.6. This implies that the N/O in extremely metal-deficient galaxies could increase with decreasing metallicity.Comment: 20 pages, 11 figures, accepted for pulication in Astronomy and Astrophysic

    An imaging and spectroscopic study of the very metal-deficient blue compact dwarf galaxy Tol 1214--277

    Get PDF
    We present a spectrophotometric study based on VLT/FORS I observations of one of the most metal-deficient blue compact dwarf (BCD) galaxies known, Tol 1214-277 (Z ~ Zsun/25). The data show that roughly half of the total luminosity of the BCD originates from a bright and compact starburst region located at the northeastern tip of a faint dwarf galaxy with cometary appearance. The starburst has ignited less than 4 Myr ago and its emission is powered by several thousands O7V stars and ~ 170 late-type nitrogen Wolf-Rayet stars located within a compact region with < 500 pc in diameter. For the first time in a BCD, a relatively strong [Fe V] 4227 emission line is seen which together with intense He II 4686 emission indicates the presence of a very hard radiation field in Tol 1214-277. We argue that this extraordinarily hard radiation originates from both Wolf--Rayet stars and radiative shocks in the starburst region. The structural properties of the low-surface-brightness (LSB) component underlying the starburst have been investigated by means of surface photometry down to 28 B mag/sq.arcsec. We find that, for a surface brightness level fainter than ~ 24.5 B mag/sq.arcsec, an exponential fitting law provides an adequate approximation to its radial intensity distribution. The broad-band colors in the outskirts of the LSB component of Tol 1214-277 are nearly constant and are consistent with an age below one Gyr. This conclusion is supported by the comparison of the observed spectral energy distribution (SED) of the LSB host with theoretical SEDs.Comment: 17 pages, 11 Postscript figures, uses emulateapj.sty, to appear in Astronomical Journa

    Luminous Compact Blue Galaxies up to z~1 in the HST Ultra Deep Field: I. Small galaxies, or blue centers of massive disks?

    Get PDF
    We analyze 26 Luminous Compact Blue Galaxies (LCBGs) in the HST/ACS Ultra Deep Field (UDF) at z ~ 0.2-1.3, to determine whether these are truly small galaxies, or rather bright central starbursts within existing or forming large disk galaxies. Surface brightness profiles from UDF images reach fainter than rest-frame 26.5 B mag/arcsec^2 even for compact objects at z~1. Most LCBGs show a smaller, brighter component that is likely star-forming, and an extended, roughly exponential component with colors suggesting stellar ages >~ 100 Myr to few Gyr. Scale lengths of the extended components are mostly >~ 2 kpc, >1.5-2 times smaller than those of nearby large disk galaxies like the Milky Way. Larger, very low surface brightness disks can be excluded down to faint rest-frame surface brightnesses (>~ 26 B mag/arcsec^2). However, 1 or 2 of the LCBGs are large, disk-like galaxies that meet LCBG selection criteria due to a bright central nucleus, possibly a forming bulge. These results indicate that >~ 90% of high-z LCBGs are small galaxies that will evolve into small disk galaxies, and low mass spheroidal or irregular galaxies in the local Universe, assuming passive evolution and no significant disk growth. The data do not reveal signs of disk formation around small, HII-galaxy-like LCBGs, and do not suggest a simple inside-out growth scenario for larger LCBGs with a disk-like morphology. Irregular blue emission in distant LCBGs is relatively extended, suggesting that nebular emission lines from star-forming regions sample a major fraction of an LCBG's velocity field.Comment: 11 pages, 2 figures, AASTeX; accepted for publication in Astrophysical Journal Letter
    corecore