2 research outputs found

    Aerial Vehicles to Detect Maximum Volume of Plume Material Associated with Habitable Areas in Extreme Environments

    Get PDF
    Current technologies of exploring habitable areas of icy moons are limited to flybys of space probes. This research project addresses long-term navigation of icy moons by developing a MATLAB adjustable trajectory based on the volume of plume material observed. Plumes expose materials from the sub-surface without accessing the subsurface. Aerial vehicles capable of scouting vapor plumes and detecting maximum plume material volumes, which are considered potentially habitable in inhospitable environments, would enable future deep-space missions to search for extraterrestrial organisms on the surface of icy moons. Although this platform is still a prototype, it demonstrates the potential aerial vehicles can have in improving the capabilities of long-term space navigation and enabling technology for detecting life in extreme environments. Additionally, this work is developing the capabilities that could be utilized as a platform for space biology research. For example, aerial vehicles that are sent to map extreme environments of icy moons or the planet Mars, could also carry small payloads with automated cell-biology experiments, designed to probe the biological response of low-gravity and high-radiation planetary environments, serving as a pathfinder for future human missions
    corecore