566 research outputs found

    Modified f(R) gravity unifying R^m inflation with \LambdaCDM epoch

    Get PDF
    We consider modified f(R)f(R) gravity which may unify RmR^m early-time inflation with late-time Λ\LambdaCDM epoch. It is shown that such model passes the local tests (Newton law, stability of Earth-like gravitational solution, very heavy mass for additional scalar degree of freedom) and suggests the realistic alternative for General Relativity. Various scenarios for future evolution of f(R)f(R) Λ\LambdaCDM era are discussed.Comment: LaTeX 10 pages, version to appear in PR

    Quantum bounds for gravitational de Sitter entropy and the Cardy-Verlinde formula

    Full text link
    We analyze different types of quantum corrections to the Cardy-Verlinde entropy formula in a Friedmann-Robertson-Walker universe and in an (anti)-de Sitter space. In all cases we show that quantum corrections can be represented by an effective cosmological constant which is then used to redefine the parameters entering the Cardy-Verlinde formula so that it becomes valid also with quantum corrections, a fact that we interpret as a further indication of its universality. A proposed relation between Cardy-Verlinde formula and the ADM Hamiltonian constraint is given.Comment: LaTeX file, 15 pages, reference is adde

    Effective Action of Composite Fields for General Gauge Theories in BLT-Covariant Formalism

    Get PDF
    The gauge dependence of the effective action of composite fields for general gauge theories in the framework of the quantization method by Batalin, Lavrov and Tyutin is studied. The corresponding Ward identities are obtained. The variation of composite fields effective action is found in terms of new set of operators depending on composite field. The theorem of the on-shell gauge fixing independence for the effective action of composite fields in such formalism is proved. brief discussion of gravitational-vector induced interaction for Maxwell theory with composite fields is given.Comment: Typos corrected. Latex fil

    Effect of quantum noise on Coulomb blockade in normal tunnel junctions at high voltages

    Get PDF
    We have investigated asymptotic behavior of normal tunnel junctions at voltages where even the best ohmic environments start to look like RC transmission lines. In the experiments, this is manifested by an exceedingly slow approach to the linear behavior above the Coulomb gap. As expected on the basis of the quantum theory taking into account interaction with the environmental modes, better fits are obtained using 1/sqrt{V}- than 1/V- dependence for the asymptote. These results agree with the horizon picture if the frequency-dependent phase velocity is employed instead of the speed of light in order to determine the extent of the surroundings seen by the junction.Comment: 9 pages, 4 figures, submitted to Phys. Rev.

    One-loop f(R) Gravitational Modified Models

    Full text link
    The one-loop quantisation of a general class of modified gravity models around a classical de Sitter background is presented. Application to the stability of the models is addressed.Comment: Latex, 8 pages, no figures. To appear in Journal of Physics A. Two references adde

    Convenient Versus Unique Effective Action Formalism in 2D Dilaton-Maxwell Quantum Gravity

    Full text link
    The structure of one-loop divergences of two-dimensional dilaton-Maxwell quantum gravity is investigated in two formalisms: one using a convenient effective action and the other a unique effective action. The one-loop divergences (including surface divergences) of the convenient effective action are calculated in three different covariant gauges: (i) De Witt, (ii) Ω\Omega-degenerate De Witt, and (iii) simplest covariant. The on-shell effective action is given by surface divergences only (finiteness of the SS-matrix), which yet depend upon the gauge condition choice. Off-shell renormalizability is discussed and classes of renormalizable dilaton and Maxwell potentials are found which coincide in the cases of convenient and unique effective actions. A detailed comparison of both situations, i.e. convenient vs. unique effective action, is given. As an extension of the procedure, the one-loop effective action in two-dimensional dilaton-Yang-Mills gravity is calculated.Comment: 25 pages, LaTeX file, HUPD-93-0

    On thermodynamics second law in the modified Gauss Bonnet gravity

    Full text link
    The second law and the generalized second law of thermodynamics in cosmology in the framework of the modified Gauss-Bonnet theory of gravity are investigated. The conditions upon which these laws hold are derived and discussed.Comment: 9pages, typos corrected, references adde

    Conformal anomaly for 2d and 4d dilaton coupled spinors

    Get PDF
    We study quantum dilaton coupled spinors in two and four dimensions. Making classical transformation of metric, dilaton coupled spinor theory is transformed to minimal spinor theory with another metric and in case of 4d spinor also in the background of the non-trivial vector field. This gives the possibility to calculate 2d and 4d dilaton dependent conformal (or Weyl) anomaly in easy way. Anomaly induced effective action for such spinors is derived. In case of 2d, the effective action reproduces, without any extra terms, the term added by hands in the quantum correction for RST model, which is exactly solvable. For 4d spinor the chiral anomaly which depends explicitly from dilaton is also found. As some application we discuss SUSY Black Holes in dilatonic supergravity with WZ type matter and Hawking radiation in the same theory. As another application we investigate spherically reduced Einstein gravity with 2d dilaton coupled fermion anomaly induced effective action and show the existence of quantum corrected Schwarszchild-de Sitter (SdS) (Nariai) BH with multiple horizon.Comment: LaTeX file, 15 page

    One-dimensional Josephson arrays as superlattices for single Cooper pairs

    Full text link
    We investigate uniform one-dimensional arrays of small Josephson junctions (EJECE_J \ll E_C, EC=(2e)2/2CE_C = (2e)^2/2C) with a realistic Coulomb interaction U(x)=ECλexp(x/λ)U(x) = E_C \lambda \exp( - |x|/\lambda) (here λ1\lambda \gg 1 is the screening length in units of the lattice constant of the array). At low energies this system can be described in terms of interacting Bose particles (extra single Cooper pairs) on the lattice. With increasing concentration ν\nu of extra Cooper pairs, a crossover from the Bose gas phase to the Wigner crystal phase and then to the superlattice regime occurs. The phase diagram in the superlattice regime consists of commensurable insulating phases with ν=1/l\nu = 1/l (ll is integer) separated by superconducting regions where the current is carried by excitations with {\em fractional} electric charge q=±2e/lq = \pm 2e/l. The Josephson current through a ring-shaped array pierced by magnetic flux is calculated for all of the phases.Comment: 4 pages (LATEX), 2 figure
    corecore