29,112 research outputs found

    The Diffraction Model and its Applicability for Wakefield Calculations

    Get PDF
    The operation of a Free Electron Laser (FEL) in the ultraviolet or in the X-ray regime requires the acceleration of electron bunches with an rms length of 25 to 50 micro meters. The wakefields generated by these sub picosecond bunches extend into the frequency range well beyond the threshold for Cooper pair breakup (about 750 GHz) in superconducting niobium at 2 K. It is shown, that the superconducting cavities can indeed be operated with 25 micro meter bunches without suffering a breakdown of superconductivity (quench), however at the price of a reduced quality factor and an increased heat transfer to the superfluid helium bath. This was first shown by wakefield calculations based on the diffraction model. In the meantime a more conventional method of computing wake fields in the time domain by numerical methods was developed and used for the wakefield calculations. Both methods lead to comparable results: the operation of TESLA with 25 micro meter bunches is possible but leads to an additional heat load due to the higher order modes (HOMs). Therefore HOM dampers for these high frequencies are under construction. These dampers are located in the beam pipes between the 9-cell cavities. So it is of interest, if there are trapped modes in the cavity due to closed photon orbits. In this paper we investigate the existence of trapped modes and the distribution of heat load over the surface of the TESLA cavity by numerical photon tracking.Comment: Linac2000 conference paper ID No. MOE0

    Density perturbations in Kaluza--Klein theories during a de Sitter phase

    Get PDF
    In the context of Kaluza-Klein theories, we consider a model in which the universe is filled with a perfect fluid described by a barotropic equation of state. An analysis of density perturbations employing the synchronous gauge shows that there are cases where these perturbations have an exponential growth during a de Sitter phase evolution in the external space.Comment: LaTex file, 10 pages. To be published in Classical and Quantum Gravit

    On Dimensional Degression in AdS(d)

    Full text link
    We analyze the pattern of fields in d+1 dimensional anti-de Sitter space in terms of those in d dimensional anti-de Sitter space. The procedure, which is neither dimensional reduction nor dimensional compactification, is called dimensional degression. The analysis is performed group-theoretically for all totally symmetric bosonic and fermionic representations of the anti-de Sitter algebra. The field-theoretical analysis is done for a massive scalar field in AdS(d+dâ€Č^\prime) and massless spin one-half, spin one, and spin two fields in AdS(d+1). The mass spectra of the resulting towers of fields in AdS(d) are found. For the scalar field case, the obtained results extend to the shadow sector those obtained by Metsaev in [1] by a different method.Comment: 30 page

    Possible Wormhole Solutions in (4+1) Gravity

    Get PDF
    We extend previous analyses of soliton solutions in (4+1) gravity to new ranges of their defining parameters. The geometry, as studied using invariants, has the topology of wormholes found in (3+1) gravity. In the induced-matter picture, the fluid does not satisfy the strong energy conditions, but its gravitational mass is positive. We infer the possible existance of (4+1) wormholes which, compared to their (3+1) counterparts, are less exotic.Comment: 3 pages, latex, 1 figure

    Shortcuts in a Nonlinear Dynamical Braneworld in Six Dimensions

    Full text link
    We consider a dynamical brane world in a six-dimensional spacetime containing a singularity. Using the Israel conditions we study the motion of a 4-brane embedded in this setup. We analyse the brane behaviour when its position is perturbed about a fixed point and solve the full nonlinear dynamics in the several possible scenarios. We also investigate the possible gravitational shortcuts and calculate the delay between graviton and photon signals and the ratio of the corresponding subtended horizons.Comment: 26 pages, 9 figures. References and discussion added. Title changed to match the version accepted in Class. and Quant. Gra

    Classical mappings of the symplectic model and their application to the theory of large-amplitude collective motion

    Full text link
    We study the algebra Sp(n,R) of the symplectic model, in particular for the cases n=1,2,3, in a new way. Starting from the Poisson-bracket realization we derive a set of partial differential equations for the generators as functions of classical canonical variables. We obtain a solution to these equations that represents the classical limit of a boson mapping of the algebra. The relationship to the collective dynamics is formulated as a theorem that associates the mapping with an exact solution of the time-dependent Hartree approximation. This solution determines a decoupled classical symplectic manifold, thus satisfying the criteria that define an exactly solvable model in the theory of large amplitude collective motion. The models thus obtained also provide a test of methods for constructing an approximately decoupled manifold in fully realistic cases. We show that an algorithm developed in one of our earlier works reproduces the main results of the theorem.Comment: 23 pages, LaTeX using REVTeX 3.

    A repulsive reference potential reproducing the dynamics of a liquid with attractions

    Get PDF
    A well-known result of liquid state theory is that the structure of dense fluids is mainly determined by repulsive forces. The WCA potential, which cuts intermolecular potentials at their minima, is therefore often used as a reference. However, this reference gives quite wrong results for the viscous dynamics of the Kob-Andersen binary Lennard-Jones liquid [Berthier and Tarjus, Phys. Rev. Lett. 103, 170601 (2009)]. We show that repulsive inverse-power law potentials provide a useful reference for this liquid by reproducing its structure, dynamics, and isochoric heat capacity

    On the Transfer of Metric Fluctuations when Extra Dimensions Bounce or Stabilize

    Full text link
    In this report, we study within the context of general relativity with one extra dimension compactified either on a circle or an orbifold, how radion fluctuations interact with metric fluctuations in the three non-compact directions. The background is non-singular and can either describe an extra dimension on its way to stabilization, or immediately before and after a series of non-singular bounces. We find that the metric fluctuations transfer undisturbed through the bounces or through the transients of the pre-stabilization epoch. Our background is obtained by considering the effects of a gas of massless string modes in the context of a consistent 'massless background' (or low energy effective theory) limit of string theory. We discuss applications to various approaches to early universe cosmology, including the ekpyrotic/cyclic universe scenario and string gas cosmology.Comment: V2. Minor Clarifications V3. appendix and 2 figures added, typos corrected, conclusions unchanged 12 pages, 6 figure
    • 

    corecore