1,421 research outputs found
Tuning effective interactions close to the critical point in colloidal suspensions
We report a numerical investigation of two colloids immersed in a critical
solvent, with the aim of quantifying the effective colloid-colloid interaction
potential. By turning on an attraction between the colloid and the solvent
particles we follow the evolution from the case in which the solvent density
close to the colloids changes from values smaller than the bulk to values
larger than the bulk. We thus effectively implement the so-called and
boundary conditions defined in field theoretical approaches focused on
the description of critical Casimir forces. We find that the effective
potential at large distances decays exponentially, with a characteristic decay
length compatible with the bulk critical correlation length, in full agreement
with theoretical predictions. We also investigate the case of boundary
condition, where the effective potential becomes repulsive. Our study provides
a guidance for a design of the interaction potential which can be exploited to
control the stability of colloidal systems
Unveiling the complex glassy dynamics of square shoulder systems: simulations and theory
We performed extensive molecular dynamics (MD) simulations, supplemented by
Mode Coupling Theory (MCT) calculations, for the Square Shoulder (SS) model, a
purely repulsive potential where the hard-core is complemented by a finite
shoulder. For the one-component version of this model, MCT predicted [Sperl
{\it et al.} Phys. Rev. Lett. {\bf 104}, 145701 (2010)] the presence of
diffusion anomalies both upon cooling and upon compression and the occurrence
of glass-glass transitions. In the simulations, we focus on a non-crystallising
binary mixture, which, at the investigated shoulder width, shows a
non-monotonic behaviour of the diffusion upon cooling but not upon isothermal
compression. In addition, we find the presence of a disconnected glass-glass
line in the phase diagram, ending in two higher-order singularities. These
points generate a logarithmic dependence of the density correlators as well as
a subdiffusive behaviour of the mean squared displacement, although with the
interference of the nearby liquid-glass transition. We also perform novel MCT
calculations using as input the partial structure factors obtained within MD,
confirming the simulation results. The presence of two hard sphere glasses,
differing only in their hard core length, is revealed, showing that the simple
competition between the two is sufficient for creating a rather complex
dynamical behaviour
Automorphisms and forms of simple infinite-dimensional linearly compact Lie superalgebras
We describe the group of continuous automorphisms of all simple
infinite-dimensional linearly compact Lie superalgebras and use it in order to
classify F-forms of these superalgebras over any field F of characteristic
zero.Comment: 24 page
Strong pressure-energy correlations in liquids as a configuration space property: Simulations of temperature down jumps and crystallization
Computer simulations recently revealed that several liquids exhibit strong
correlations between virial and potential energy equilibrium fluctuations in
the NVT ensemble [U. R. Pedersen {\it et al.}, Phys. Rev. Lett. {\bf 100},
015701 (2008)]. In order to investigate whether these correlations are present
also far from equilibrium constant-volume aging following a temperature down
jump from equilibrium was simulated for two strongly correlating liquids, an
asymmetric dumbbell model and Lewis-Wahnstr{\"o}m OTP, as well as for SPC water
that is not strongly correlating. For the two strongly correlating liquids
virial and potential energy follow each other closely during the aging towards
equilibrium. For SPC water, on the other hand, virial and potential energy vary
with little correlation as the system ages towards equilibrium. Further proof
that strong pressure-energy correlations express a configuration space property
comes from monitoring pressure and energy during the crystallization (reported
here for the first time) of supercooled Lewis-Wahnstr{\"o}m OTP at constant
temperature
Pressure-energy correlations in liquids. V. Isomorphs in generalized Lennard-Jones systems
This series of papers is devoted to identifying and explaining the properties
of strongly correlating liquids, i.e., liquids with more than 90% correlation
between their virial W and potential energy U fluctuations in the NVT ensemble.
Paper IV [N. Gnan et al., J. Chem. Phys. v131, 234504 (2009)] showed that
strongly correlating liquids have "isomorphs", which are curves in the phase
diagram along which structure, dynamics, and some thermodynamic properties are
invariant in reduced units. In the present paper, using the fact that
reduced-unit radial distribution functions are isomorph invariant, we derive an
expression for the shapes of isomorphs in the WU phase diagram of generalized
Lennard-Jones systems of one or more types of particles. The isomorph shape
depends only on the Lennard-Jones exponents; thus all isomorphs of standard
Lennard-Jones systems (with exponents 12 and 6) can be scaled onto to a single
curve. Two applications are given. One is testing the prediction that the
solid-liquid coexistence curve follows an isomorph by comparing to recent
simulations by Ahmed and Sadus [J. Chem. Phys. v131, 174504 (2009)]. Excellent
agreement is found on the liquid side of the coexistence, whereas the agreement
is worse on the solid side. A second application is the derivation of an
approximate equation of state for generalized Lennard-Jones systems by
combining the isomorph theory with the Rosenfeld-Tarazona expression for the
temperature dependence of potential energy on isochores. It is shown that the
new equation of state agrees well with simulations.Comment: 12 pages, 14 figures, Section on solid-liquid coexistence expande
Estimating the density scaling exponent of viscous liquids from specific heat and bulk modulus data
It was recently shown by computer simulations that a large class of liquids
exhibits strong correlations in their thermal fluctuations of virial and
potential energy [Pedersen et al., Phys. Rev. Lett. 100, 015701 (2008)]. Among
organic liquids the class of strongly correlating liquids includes van der
Waals liquids, but excludes ionic and hydrogen-bonding liquids. The present
note focuses on the density scaling of strongly correlating liquids, i.e., the
fact their relaxation time tau at different densities rho and temperatures T
collapses to a master curve according to the expression tau propto
F(rho^gamma/T) [Schroder et al., arXiv:0803.2199]. We here show how to
calculate the exponent gamma from bulk modulus and specific heat data, either
measured as functions of frequency in the metastable liquid or extrapolated
from the glass and liquid phases to a common temperature (close to the glass
transition temperature). Thus an exponent defined from the response to highly
nonlinear parameter changes may be determined from linear response
measurements
Aging effects manifested in the potential energy landscape of a model glass former
We present molecular dynamics simulations of a model glass-forming liquid
(the binary Kob-Anderson Lennard-Jones model) and consider the distributions of
inherent energies and metabasins during aging. In addition to the typical
protocol of performing a temperature jump from a high temperature to a low
destination temperature, we consider the temporal evolution of the
distributions after an 'up-jump', i.e. from a low to a high temperature. In
this case the distribution of megabasin energies exhibits a transient two-peak
structure. Our results can qualitatively be rationalized in terms of a trap
model with a Gaussian distribution of trap energies. The analysis is performed
for different system sizes. A detailed comparison with the trap model is
possible only for a small system because of major averging effects for larger
systems.Comment: 16 pages, 14 figure
Kink Localization under Asymmetric Double-Well Potential
We study diffuse phase interfaces under asymmetric double-well potential
energies with degenerate minima and demonstrate that the limiting sharp
profile, for small interface energy cost, on a finite space interval is in
general not symmetric and its position depends exclusively on the second
derivatives of the potential energy at the two minima (phases). We discuss an
application of the general result to porous media in the regime of solid-fluid
segregation under an applied pressure and describe the interface between a
fluid-rich and a fluid-poor phase. Asymmetric double-well potential energies
are also relevant in a very different field of physics as that of Brownian
motors. An intriguing analogy between our result and the direction of the dc
soliton current in asymmetric substrate driven Brownian motors is pointed out
Properties of patchy colloidal particles close to a surface: a Monte Carlo and density functional study
We investigate the behavior of a patchy particle model close to a hard-wall
via Monte Carlo simulation and density functional theory (DFT). Two DFT
approaches, based on the homogeneous and inhomogeneous versions of Wertheim's
first order perturbation theory for the association free energy are used. We
evaluate, by simulation and theory, the equilibrium bulk phase diagram of the
fluid and analyze the surface properties for two isochores, one of which is
close to the liquid side of the gas-liquid coexistence curve. We find that the
density profile near the wall crosses over from a typical high-temperature
adsorption profile to a low-temperature desorption one, for the isochore close
to coexistence. We relate this behavior to the properties of the bulk network
liquid and find that the theoretical descriptions are reasonably accurate in
this regime. At very low temperatures, however, an almost fully bonded network
is formed, and the simulations reveal a second adsorption regime which is not
captured by DFT. We trace this failure to the neglect of orientational
correlations of the particles, which are found to exhibit surface induced
orientational order in this regime
- …