11,602 research outputs found

    A CLEAN-based Method for Deconvolving Interstellar Pulse Broadening from Radio Pulses

    Get PDF
    Multipath propagation in the interstellar medium distorts radio pulses, an effect predominant for distant pulsars observed at low frequencies. Typically, broadened pulses are analyzed to determine the amount of propagation-induced pulse broadening, but with little interest in determining the undistorted pulse shapes. In this paper we develop and apply a method that recovers both the intrinsic pulse shape and the pulse broadening function that describes the scattering of an impulse. The method resembles the CLEAN algorithm used in synthesis imaging applications, although we search for the best pulse broadening function, and perform a true deconvolution to recover intrinsic pulse structre. As figures of merit to optimize the deconvolution, we use the positivity and symmetry of the deconvolved result along with the mean square residual and the number of points below a given threshold. Our method makes no prior assumptions about the intrinsic pulse shape and can be used for a range of scattering functions for the interstellar medium. It can therefore be applied to a wider variety of measured pulse shapes and degrees of scattering than the previous approaches. We apply the technique to both simulated data and data from Arecibo observations.Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    Monolithic InP-Based Grating Spectrometer for Wavelength-Division Multiplexed Systems at 1.5 μm

    Get PDF
    A monolithic InP-based grating spectrometer for use in wavelength-division multiplexed systems at 1.5 μm is reported. The spectrometer uses a single etched reflective focusing diffraction grating and resolves >50 channels at 1 nm spacing with a ~0.3nm channel width and at least 19dB channel isolation. Operation is essentially of the state of the input polarisation

    Search for gamma rays of energy 10(15) eV from Cygnus X-3

    Get PDF
    Finite flux of excess radiation of energy 10 to the 15th power has been reported by two groups from the direction of Cygnus X-3, with the characteristic periodicity of 4.8 hrs. Samorski and Stamm find that the muon content of the showers generated by this excess radiation is about 77% of that in normal cosmic ray showers, whereas the expectation for gamma ray showers is less than 10%. It is thus difficult to understand the nature of the radiation arriving from the direction of Cygnus X-3. Samorski and Stamm measured the muon densities close to the core (approx. 10 m), where contamination due to other components is severe. Even though this does not explain the high ratio of muon densities, measurements should be carried out away from the core to establish the nature of the radiation. In order to establish the signal from Cygnus X-3 and its muon content with better statistical significance, an extensive air shower array, specifically designed for this purpose was operated at Kolar Gold Fields (longitude: 78 deg .3 E; latitude: + 12 deg .95; atmospheric depth: 920 q/square centimeters) since September, 1984. The details of the array and the accuracy of arrival direction measurements are discussed

    Terrestrial Gamma-Ray Flashes (TGFs) Observed with the Fermi-Gamma-Ray Burst Monitor: The First Hundred TGFs

    Get PDF
    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) is now detecting ~2.1 TGFs per week. At this rate, nearly a hundred TGFs will have been detected by the time of this Meeting. This rate has increased by a factor of ~8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. The high time resolution (2 microseconds) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented

    Quasars: a supermassive rotating toroidal black hole interpretation

    Get PDF
    A supermassive rotating toroidal black hole (TBH) is proposed as the fundamental structure of quasars and other jet-producing active galactic nuclei. Rotating protogalaxies gather matter from the central gaseous region leading to the birth of massive toroidal stars whose internal nuclear reactions proceed very rapidly. Once the nuclear fuel is spent, gravitational collapse produces a slender ring-shaped TBH remnant. These events are typically the first supernovae of the host galaxies. Given time the TBH mass increases through continued accretion by several orders of magnitude, the event horizon swells whilst the central aperture shrinks. The difference in angular velocities between the accreting matter and the TBH induces a magnetic field that is strongest in the region of the central aperture and innermost ergoregion. Due to the presence of negative energy states when such a gravitational vortex is immersed in an electromagnetic field, circumstances are near ideal for energy extraction via non-thermal radiation including the Penrose process and superradiant scattering. This establishes a self-sustaining mechanism whereby the transport of angular momentum away from the quasar by relativistic bi-directional jets reinforces both the modulating magnetic field and the TBH/accretion disk angular velocity differential. Quasar behaviour is extinguished once the BH topology becomes spheroidal. Similar mechanisms may be operating in microquasars, SNe and GRBs when neutron density or BH tori arise. In certain circumstances, long-term TBH stability can be maintained by a negative cosmological constant, otherwise the classical topology theorems must somehow be circumvented. Preliminary evidence is presented that Planck-scale quantum effects may be responsible.Comment: 26 pages, 14 figs, various corrections and enhancements, final versio

    Chemopreventive Potential of Synergy1 and Soybean in Reducing Azoxymethane-Induced Aberrant Crypt Foci in Fisher 344 Male Rats

    Get PDF
    Synergy1, a prebiotic composed of Inulin and Oligofructose (1 : 1). Soybean meal is a natural source of isoflavones. The objective was to investigate the effects of feeding Synergy1 and SM on the incidence of azoxymethane- (AOM-) induced aberrant crypt foci (ACF) in Fisher 344 male rats. Rats (54) were randomly assigned to 9 groups (n = 6). Control group (C) was fed AIN-93G and treatment groups Syn1 and SM at 5% and 10% singly and in combinations. Rats were injected with two s/c injections of AOM at 7 and 8 weeks of age at 16 mg/kg body weight and killed at 17 weeks by CO2 asphyxiation. Colonic ACF enumeration and hepatic enzyme activities were measured. Reductions (%) in total ACF among treatment groups fed combinations were higher (67–77) compared to groups fed singly (52–64). Synergistic mechanisms among phytochemicals may be responsible suggesting protective role in colon carcinogenesis with implications in food product development
    corecore