31,549 research outputs found

    A model-based constraint on CO<sub>2</sub> fertilisation

    Get PDF
    We derive a constraint on the strength of CO2 fertilisation of the terrestrial biosphere through a “top-down” approach, calibrating Earth system model parameters constrained by the post-industrial increase of atmospheric CO2 concentration. We derive a probabilistic prediction for the globally averaged strength of CO2 fertilisation in nature, for the period 1850 to 2000 AD, implicitly net of other limiting factors such as nutrient availability. The approach yields an estimate that is independent of CO2 enrichment experiments. To achieve this, an essential requirement was the incorpo- ration of a land use change (LUC) scheme into the GENIE Earth system model. Using output from a 671-member ensemble of transient GENIE simulations, we build an emulator of the change in atmospheric CO2 concentration change since the preindustrial period. We use this emulator to sample the 28-dimensional input parameter space. A Bayesian calibration of the emulator output suggests that the increase in gross primary productivity (GPP) in response to a doubling of CO2 from preindustrial values is very likely (90 % confidence) to exceed 20 %, with a most likely value of 40–60 %. It is important to note that we do not represent all of the possible contributing mechanisms to the terrestrial sink. The missing processes are subsumed into our calibration of CO2 fertilisation, which therefore represents the combined effect of CO2 fertilisation and additional missing processes. If the missing processes are a net sink then our estimate represents an upper bound. We derive calibrated estimates of carbon fluxes that are consistent with existing estimates. The present-day land–atmosphere flux (1990–2000) is estimated at −0.7 GTC yr−1 (likely, 66 % confidence, in the range 0.4 to −1.7 GTC yr−1). The present-day ocean–atmosphere flux (1990–2000) is estimated to be −2.3 GTC yr−1 (likely in the range −1.8 to −2.7 GTC yr−1). We estimate cumulative net land emissions over the post-industrial period (land use change emissions net of the CO2 fertilisation and climate sinks) to be 66 GTC, likely to lie in the range 0 to 128 GTC

    Magnetic properties of strongly disordered electronic systems

    Full text link
    We present a unified, global perspective on the magnetic properties of strongly disordered electronic systems, with special emphasis on the case where the ground state is metallic. We review the arguments for the instability of the disordered Fermi liquid state towards the formation of local magnetic moments, and argue that their singular low temperature thermodynamics are the ``quantum Griffiths'' precursors of the quantum phase transition to a metallic spin glass; the local moment formation is therefore not directly related to the metal-insulator transition. We also review the the mean-field theory of the disordered Fermi liquid to metallic spin glass transition and describe the separate regime of ``non-Fermi liquid'' behavior at higher temperatures near the quantum critical point. The relationship to experimental results on doped semiconductors and heavy-fermion compounds is noted.Comment: 25 pages; Contribution to the Royal Society Discussion Meeting on "The Metal-Non Metal Transition in Macroscopic and Microscopic Systems", March 5-6, 199

    Metallization of Fluid Hydrogen

    Full text link
    The electrical resistivity of liquid hydrogen has been measured at the high dynamic pressures, densities and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 GPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) processes in which structural changes are paramount.Comment: 12 pages, RevTeX format. Figures available on request; send mail to: [email protected] To appear: Philosophical Transaction of the Royal Society

    Variational study of a dilute Bose condensate in a harmonic trap

    Full text link
    A two-parameter trial condensate wave function is used to find an approximate variational solution to the Gross-Pitaevskii equation for N0N_0 condensed bosons in an isotropic harmonic trap with oscillator length d0d_0 and interacting through a repulsive two-body scattering length a>0a>0. The dimensionless parameter N0≡N0a/d0{\cal N}_0 \equiv N_0a/d_0 characterizes the effect of the interparticle interactions, with N0â‰Ș1{\cal N}_0 \ll 1 for an ideal gas and N0≫1{\cal N}_0 \gg 1 for a strongly interacting system (the Thomas-Fermi limit). The trial function interpolates smoothly between these two limits, and the three separate contributions (kinetic energy, trap potential energy, and two-body interaction energy) to the variational condensate energy and the condensate chemical potential are determined parametrically for any value of N0{\cal N}_0, along with illustrative numerical values. The straightforward generalization to an anisotropic harmonic trap is considered briefly.Comment: 14 pages, RevTeX, submitted to Journal of Low Temperature Physic

    The doubling of the frame - Visual art and discourse

    Get PDF
    Natalie Edwards, Ben McCann and Peter Poian

    Cross-sectional and plan-view cathodoluminescence of GaN partially coalesced above a nanocolumn array

    Get PDF
    The optical properties of GaN layers coalesced above an array of nanocolumns have important consequences for advanced optoelectronic devices. GaN nanocolumns coalesced using a nanoscale epitaxial overgrowth technique have been investigated by high resolution cathodoluminescence (CL) hyperspectral imaging. Plan-view microscopy reveals partially coalesced GaN layers with a sub-ÎŒm scale domain structure and distinct grain boundaries, which is mapped using CL spectroscopy showing high strain at the grain boundaries. Cross-sectional areas spanning the partially coalesced GaN and underlying nanocolumns are mapped using CL, revealing that the GaN bandedge peak shifts by about 25 meV across the partially coalesced layer of ∌2 Όm thick. The GaN above the nanocolumns remains under tensile strain, probably due to Si out-diffusion from the mask or substrate. The cross-sectional data show how this strain is reduced towards the surface of the partially coalesced layer, possibly due to misalignment between adjacent partially coalesced regions

    First Calculation of Hyperon Axial Couplings from Lattice QCD

    Full text link
    In this work, we report the first lattice calculation of hyperon axial couplings, using the 2+1-flavor MILC configurations and domain-wall fermion valence quarks. Both the Σ\Sigma and Ξ\Xi axial couplings are computed for the first time in lattice QCD. In particular we find that gΣΣ=0.450(21)stat(27)systg_{\Sigma\Sigma} = 0.450(21)_{\rm stat}(27)_{\rm syst} and gΞΞ=−0.277(15)stat(19)systg_{\Xi\Xi} = -0.277(15)_{\rm stat}(19)_{\rm syst}.Comment: 5 pages, 2 figure

    Analytical calculation of the Green's function and Drude weight for a correlated fermion-boson system

    Full text link
    In classical Drude theory the conductivity is determined by the mass of the propagating particles and the mean free path between two scattering events. For a quantum particle this simple picture of diffusive transport loses relevance if strong correlations dominate the particle motion. We study a situation where the propagation of a fermionic particle is possible only through creation and annihilation of local bosonic excitations. This correlated quantum transport process is outside the Drude picture, since one cannot distinguish between free propagation and intermittent scattering. The characterization of transport is possible using the Drude weight obtained from the f-sum rule, although its interpretation in terms of free mass and mean free path breaks down. For the situation studied we calculate the Green's function and Drude weight using a Green's functions expansion technique, and discuss their physical meaning.Comment: final version, minor correction

    Force correlations and arches formation in granular assemblies

    Full text link
    In the context of a simple microscopic schematic scalar model we study the effects of spatial correlations in force transmission in granular assemblies. We show that the parameters of the normalized weights distribution function, P(v)∌vαexp⁥(−v/ϕ)P(v)\sim v^{\alpha}\exp(-v/\phi), strongly depend on the spatial extensions, ΟV\xi_V, of such correlations. We show, then, the connections between measurable macroscopic quantities and microscopic mechanisms enhancing correlations. In particular we evaluate how the exponential cut-off, ϕ(ΟV)\phi(\xi_V), and the small forces power law exponent, α(ΟV)\alpha(\xi_V), depend on the correlation length, ΟV\xi_V. If correlations go to infinity, weights are power law distributed.Comment: 6 page

    Models of stress fluctuations in granular media

    Full text link
    We investigate in detail two models describing how stresses propagate and fluctuate in granular media. The first one is a scalar model where only the vertical component of the stress tensor is considered. In the continuum limit, this model is equivalent to a diffusion equation (where the r\^ole of time is played by the vertical coordinate) plus a randomly varying convection term. We calculate the response and correlation function of this model, and discuss several properties, in particular related to the stress distribution function. We then turn to the tensorial model, where the basic starting point is a wave equation which, in the absence of disorder, leads to a ray-like propagation of stress. In the presence of disorder, the rays acquire a diffusive width and the angle of propagation is shifted. A striking feature is that the response function becomes negative, which suggests that the contact network is mechanically unstable to very weak perturbations. The stress correlation function reveals characteristic features related to the ray-like propagation, which are absent in the scalar description. Our analytical calculations are confirmed and extended by a numerical analysis of the stochastic wave equation.Comment: 32 pages, latex, 18 figures and 6 diagram
    • 

    corecore