127 research outputs found

    Production of Extracellular Laccase from Bacillus subtilis

    Get PDF
    Laccases are the model enzymes for multicopper oxidases and participate in several applications such as bioremediation, biopulping, textile, and food industries. Laccase producing bacterium, Bacillus subtilis MTCC 2414, was subjected to optimization by conventional techniques and was partially purified using ammonium salt precipitation method. The agroresidue substrates used for higher yield of laccase were rice bran and wheat bran. Maximum production was achieved at temperature 30°C (270 ± 2.78 U/mL), pH 7.0 (345 ± 3.14 U/mL), and 96 h (267 ± 2.64 U/mL) of incubation. The carbon and nitrogen sources resulted in high enzyme yield at 3% sucrose (275 ± 3.11 U/mL) and 3% peptone (352.2 ± 4.32 U/mL) for rice bran and 3% sucrose (247.4 ± 3.51 U/mL) and 3% peptone (328 ± 3.33 U/mL) for wheat bran, respectively. The molecular weights of partially purified laccase were 52 kDa for rice bran and 55 kDa for wheat bran. The laccase exhibited optimal activity at 70°C (260.3 ± 6.15 U/mL), pH 9.0 (266 ± 4.02 U/mL), and metal ion CuSO4 (141.4 ± 6.64) was found to increase the production. This is the first report that delivers the higher yield of laccase produced from B. subtilis MTCC 2414 using agroresidues as a potential substrate

    Perovskite Solar Cells: A Porous Graphitic Carbon based Hole Transporter/Counter Electrode Material Extracted from an Invasive Plant Species Eichhornia Crassipes

    Get PDF
    Perovskite solar cells (PSCs) composed of organic polymer-based hole-transporting materials (HTMs) are considered to be an important strategy in improving the device performance, to compete with conventional solar cells. Yet the use of such expensive and unstable HTMs, together with hygroscopic perovskite structure remains a concern – an arguable aspect for the prospect of onsite photovoltaic (PV) application. Herein, we have demonstrated the sustainable fabrication of efficient and air-stable PSCs composed of an invasive plant (Eichhornia crassipes) extracted porous graphitic carbon (EC-GC) which plays a dual role as HTM/counter electrode. The changes in annealing temperature (~450 °C, ~850 °C and ~1000 °C) while extracting the EC-GC, made a significant impact on the degree of graphitization - a remarkable criterion in determining the device performance. Hence, the fabricated champion device-1c: Glass/FTO/c-TiO2/mp-TiO2/CH3NH3PbI3−xClx/EC-GC10@CH3NH3PbI3−x Clx/EC-GC10) exhibited a PCE of 8.52%. Surprisingly, the introduced EC-GC10 encapsulated perovskite interfacial layer at the perovskite/HTM interface helps in overcoming the moisture degradation of the hygroscopic perovskite layer in which the same champion device-1c evinced better air stability retaining its efficiency ~94.40% for 1000 hours. We believe that this present work on invasive plant extracted carbon playing a dual role, together as an interfacial layer may pave the way towards a reliable perovskite photovoltaic device at low-cost.publishedVersio

    A Review on the Classifications of Organic/Inorganic/Carbonaceous Hole Transporting Materials for Perovskite Solar Cell Application

    Full text link
    The rapid increase in the efficiency of perovskite solar cells (PSCs) in last few decades have made them very attractive to the photovoltaic (PV) community. However, the serious challenge is related to the stability under various conditions and toxicity issues. A huge number of articles have been published in PSCs in the recent years focusing these issues by employing different strategies in the synthesis of electron transport layer (ETL), active perovskite layer, hole transport layer (HTL) and back contact counter electrodes. This article tends to focus on the role and classification of different materials used as HTL in influencing long-term stability, in improving the photovoltaic parameters and thereby enhancing the device efficiency. Hole Transport Materials (HTMs) are categorized by dividing into three primary types, namely; organic, inorganic and carbonaceous HTMs. To analyze the role of HTM in detail, we further divide these primary type of HTMs into different subgroups. The organic-based HTMs are subdivided into three categories, namely; long polymer HTMs, small molecule HTMs and cross-linked polymers and the inorganic HTMs have been classified into nickel (Ni) derivatives and copper (Cu) derivatives based HTMs, p-type semiconductor based HTMs and transition metal based HTMs. We further analyze the dual role of carbonaceous materials as HTM and counter electrode in the perovskite devices. In addition, in this review, an overview of the preparation methods, and the influence of the thickness of the HTM layers on the performance and stability of the perovskite devices are also provided. We have carried out a detailed comparison about the various classification of HTMs based on their cost-effectiveness and considering their role on effective device performance. This review further discusses the critical challenges involved in the synthesis and device engineering of HTMs. This will provide the reader a better insight into the state of the art of perovskite solar devices.publishedVersio

    Microstructural and Mössbauer properties of low temperature synthesized Ni-Cd-Al ferrite nanoparticles

    Get PDF
    We report the influence of Al3+ doping on the microstructural and Mössbauer properties of ferrite nanoparticles of basic composition Ni0.2Cd0.3Fe2.5 - xAlxO4 (0.0 ≤ x ≤ 0.5) prepared through simple sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray, transmission electron microscopy (TEM), Fourier transformation infrared (FTIR), and Mössbauer spectroscopy techniques were used to investigate the structural, chemical, and Mössbauer properties of the grown nanoparticles. XRD results confirm that all the samples are single-phase cubic spinel in structure excluding the presence of any secondary phase corresponding to any structure. SEM micrographs show the synthesized nanoparticles are agglomerated but spherical in shape. The average crystallite size of the grown nanoparticles was calculated through Scherrer formula and confirmed by TEM and was found between 2 and 8 nm (± 1). FTIR results show the presence of two vibrational bands corresponding to tetrahedral and octahedral sites. Mössbauer spectroscopy shows that all the samples exhibit superparamagnetism, and the quadrupole interaction increases with the substitution of Al3+ ions

    History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience

    Full text link
    corecore