403 research outputs found

    Hardware simulation of diesel generator and microgrid stability

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis. Also includes: Reference manual for microgrid hardware simulation system / by Jared P. Monnin and Michael M. Zieve. (c2012. (71 p. : ill.). Includes bibliographical references (p. 71)).Includes bibliographical references (p. 27).Over the last few years, people have begun to depend less on large power plants with extensive distribution systems, and more on local distributed generation sources. A microgrid, a local collection of distributed generators, has the potential to offer a more flexible and customizable power generation system, while significantly improving its effect on the environment. In order to properly deploy and scale microgrids to meet diverse energy needs, there must be more study on their stability. This paper details the process and design of the modeling of a diesel generator. With the constructed diesel generator as a component of the microgrid project, the voltage and power stability of the modeled microgrid can be tested under various load conditions and faulted islanded conditions to help design the future of the electrical grid.by Michael M. Zieve.M.Eng

    Task-based detectability in anatomical background in digital mammography, digital breast tomosynthesis and synthetic mammography.

    Get PDF
    Objective.Determining the detectability of targets for the different imaging modalities in mammography in the presence of anatomical background noise is challenging. This work proposes a method to compare the image quality and detectability of targets in digital mammography (DM), digital breast tomosynthesis (DBT) and synthetic mammography.Approach. The low-frequency structured noise produced by a water phantom with acrylic spheres was used to simulate anatomical background noise for the different types of images. A method was developed to apply the non-prewhitening observer model with eye filter (NPWE) in these conditions. A homogeneous poly(methyl) methacrylate phantom with a 0.2 mm thick aluminium disc was used to calculate 2D in-plane modulation transfer function (MTF), noise power spectrum (NPS), noise equivalent quanta, and system detective quantum efficiency for 30, 50 and 70 mm thicknesses. The in-depth MTFs of DBT volumes were determined using a thin tungsten wire. The MTF, system NPS and anatomical NPS were used in the NPWE model to calculate the threshold gold thickness of the gold discs contained in the CDMAM phantom, which was taken as reference. Main results.The correspondence between the NPWE model and the CDMAM phantom (linear Pearson correlation 0.980) yielded a threshold detectability index that was used to determine the threshold diameter of spherical microcalcifications and masses. DBT imaging improved the detection of masses, which depended mostly on the reduction of anatomical background noise. Conversely, DM images yielded the best detection of microcalcifications.Significance.The method presented in this study was able to quantify image quality and object detectability for the different imaging modalities and levels of anatomical background noise

    Using a NPWE model observer to assess suitable image quality for a digital mammography quality assurance programme

    Get PDF
    A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography qualit

    Optimal slice thickness for object detection with longitudinal partial volume effects in computed tomography.

    Get PDF
    Longitudinal partial volume effects (z-axial PVE), which occur when an object partly occupies a slice, degrade image resolution and contrast in computed tomography (CT). Z-axial PVE is unavoidable for subslice objects and reduces their contrast according to their fraction contained within the slice. This effect can be countered using a smaller slice thickness, but at the cost of an increased image noise or radiation dose. The aim of this study is to offer a tool for optimizing the reconstruction parameters (slice thickness and slice spacing) in CT protocols in the case of partial volume effects. This optimization is based on the tradeoff between axial resolution and noise. For that purpose, we developed a simplified analytical model investigating the average statistical effect of z-axial PVE on contrast and contrast-to-noise ratio (CNR). A Catphan 500 phantom was scanned with various pitches and CTDI and reconstructed with different slice thicknesses to assess the visibility of subslice targets that simulate low contrast anatomical features present in CT exams. The detectability score of human observers was used to rank the perceptual image quality against the CNR. Contrast and CNR reduction due to z-axial PVE measured on experimental data were first compared to numerical calculations and then to the analytical model. Compared to numerical calculations, the simplified algebraic model slightly overestimated the contrast but the differences remained below 5%. It could determine the optimal reconstruction parameters that maximize the objects visibility for a given dose in the case of z-axial PVE. An optimal slice thickness equal to three-fourth of the object width was correctly proposed by the model for nonoverlapping slices. The tradeoff between detectability and dose is maximized for a slice spacing of half the slice thickness associated with a slice width equal to the characteristic object width

    Impact of load type on microgrid stability

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.CD-ROM contains PDF of thesis and MDL file.Both MIT Institute Archives and Barker Library copy: with CD-ROM.Cataloged from student submitted PDF version of thesis.Includes bibliographical references.Microgrids show great promise as a means of integrating distributed generation sources into the public grid distribution system. In order to provide uninterrupted,high quality power to local loads, microgrids must have the ability to operate independently of or in parallel with the local utility. Transitioning between independent operation, also called "islanded" operation, and utility connected operation can induce stability problems in the microgrid, especially when islanding is fault induced. Software simulation suggests that induction motor loads on the microgrid significantly decrease stability during fault induced islanding. To validate the software simulations and to investigate the impact of load type on microgrid stability, we have built a hardware system that simulates the operation of a microgrid.by Jared P. Monnin.M.Eng

    A comprehensive model for x-ray projection imaging system efficiency and image quality characterization in the presence of scattered radiation.

    Get PDF
    This work proposes a method for assessing the detective quantum efficiency (DQE) of radiographic imaging systems that include both the x-ray detector and the antiscatter device. Cascaded linear analysis of the antiscatter device efficiency (DQEASD) with the x-ray detector DQE is used to develop a metric of system efficiency (DQEsys); the new metric is then related to the existing system efficiency parameters of effective DQE (eDQE) and generalized DQE (gDQE). The effect of scatter on signal transfer was modelled through its point spread function (PSF), leading to an x-ray beam transfer function (BTF) that multiplies with the classical presampling modulation transfer function (MTF) to give the system MTF. Expressions are then derived for the influence of scattered radiation on signal-difference to noise ratio (SDNR) and contrast-detail (c-d) detectability. The DQEsys metric was tested using two digital mammography systems, for eight x-ray beams (four with and four without scatter), matched in terms of effective energy. The model was validated through measurements of contrast, SDNR and MTF for poly(methyl)methacrylate thicknesses covering the range of scatter fractions expected in mammography. The metric also successfully predicted changes in c-d detectability for different scatter conditions. Scatter fractions for the four beams with scatter were established with the beam stop method using an extrapolation function derived from the scatter PSF, and validated through Monte Carlo (MC) simulations. Low-frequency drop of the MTF from scatter was compared to both theory and MC calculations. DQEsys successfully quantified the influence of the grid on SDNR and accurately gave the break-even object thickness at which system efficiency was improved by the grid. The DQEsys metric is proposed as an extension of current detector characterization methods to include a performance evaluation in the presence of scattered radiation, with an antiscatter device in place

    A strategy to qualify the performance of radiographic monitors

    Get PDF
    The purpose of this work was to compare standard desktop display systems with dedicated medical display systems. The set of image tests proposed by the American Association of Physicists in Medicine (AAPM TG18) was used to assess a Philips 107S desktop display system and a Siemens medical display. Three observers performed the subjective assessment, in a non-concerted manner. The objective assessment was performed using a CCD camera according to the AAPM TG18 procedure. The results clearly demonstrate the inadequacy of standard desktop display systems in the framework of diagnostic radiology. Moreover, a good correlation between the subjective and objective assessment methods was obtaine

    Using a NPWE model observer to assess suitable image quality for a digital mammography quality assurance programme.

    Get PDF
    A method of objectively determining imaging performance for a mammography quality assurance programme for digital systems was developed. The method is based on the assessment of the visibility of a spherical microcalcification of 0.2 mm using a quasi-ideal observer model. It requires the assessment of the spatial resolution (modulation transfer function) and the noise power spectra of the systems. The contrast is measured using a 0.2-mm thick Al sheet and Polymethylmethacrylate (PMMA) blocks. The minimal image quality was defined as that giving a target contrast-to-noise ratio (CNR) of 5.4. Several evaluations of this objective method for evaluating image quality in mammography quality assurance programmes have been considered on computed radiography (CR) and digital radiography (DR) mammography systems. The measurement gives a threshold CNR necessary to reach the minimum standard image quality required with regards to the visibility of a 0.2-mm microcalcification. This method may replace the CDMAM image evaluation and simplify the threshold contrast visibility test used in mammography quality

    Influence of detector collimation on SNR in four different MDCT scanners using a reconstructed slice thickness of 5mm

    Get PDF
    The purpose of this paper is to compare the influence of detector collimation on the signal-to-noise ratio (SNR) for a 5.0mm reconstructed slice thickness for four multi-detector row CT (MDCT) units. SNRs were measured on Catphan test phantom images from four MDCT units: a GE LightSpeed QX/I, a Marconi MX 8000, a Toshiba Aquilion and a Siemens Volume Zoom. Five-millimetre-thick reconstructed slices were obtained from acquisitions performed using detector collimations of 2.0-2.5mm and 5.0mm, 120kV, a 360° tube rotation time of 0.5s, a wide range of mA and pitch values in the range of 0.75-0.85 and 1.25-1.5. For each set of acquisition parameters, a Wiener spectrum was also calculated. Statistical differences in SNR for the different acquisition parameters were evaluated using a Student's t-test (P<0.05). The influence of detector collimation on the SNR for a 5.0-mm reconstructed slice thickness is different for different MDCT scanners. At pitch values lower than unity, the use of a small detector collimation to produce 5.0-mm thick slices is beneficial for one unit and detrimental for another. At pitch values higher than unity, using a small detector collimation is beneficial for two units. One manufacturer uses different reconstruction filters when switching from a 2.5- to a 5.0-mm detector collimation. For a comparable reconstructed slice thickness, using a smaller detector collimation does not always reduce image noise. Thus, the impact of the detector collimation on image noise should be determined by standard deviation calculations, and also by assessing the power spectra of the nois
    corecore