1,356 research outputs found

    Theory of spin-polarized scanning tunneling microscopy applied to local spins

    Full text link
    We provide a theory for scanning tunneling microscopy and spectroscopy using a spin-polarized tip. It it shown that the tunneling conductance can be partitioned into three separate contributions, a background conductance which is independent of the local spin, a dynamical conductance which is proportional to the local spin moment, and a conductance which is proportional to the noise spectrum of the local spin interactions. The presented theory is applicable to setups with magnetic tip and substrate in non-collinear arrangement, as well as for non-magnetic situations. The partitioning of the tunneling current suggests a possibility to extract the total spin moment of the local spin from the dynamical conductance. The dynamical conductance suggests a possibility to generate very high frequency spin-dependent ac currents and/or voltages. We also propose a measurement of the dynamical conductance that can be used to determine the character of the effective exchange interaction between individual spins in clusters. The third contribution to the tunneling current is associated with the spin-spin correlations induced by the exchange interaction between the local spin moment and the tunneling electrons. We demonstrate how this term can be used in the analysis of spin excitations recorded in conductance measurements. Finally, we propose to use spin-polarized scanning tunneling microscopy for detailed studies of the spin excitation spectrum.Comment: 12 pages, 4 figure, updated to match the published version, to appear in the Phys. Rev.

    Magnetism in Graphene Induced by Single-Atom Defects

    Full text link
    We study from first principles the magnetism in graphene induced by single carbon atom defects. For two types of defects considered in our study, the hydrogen chemisorption defect and the vacancy defect, the itinerant magnetism due to the defect-induced extended states has been observed. Calculated magnetic moments are equal to 1 μB\mu_B per hydrogen chemisorption defect and 1.12−-1.53 μB\mu_B per vacancy defect depending on the defect concentration. The coupling between the magnetic moments is either ferromagnetic or antiferromagnetic, depending on whether the defects correspond to the same or to different hexagonal sublattices of the graphene lattice, respectively. The relevance of itinerant magnetism in graphene to the high-TCT_C magnetic ordering is discussed.Comment: 5 pages, 6 figure

    The electronic and magnetic properties of anion doped (C, N, S) GaFeO3; an ab initio DFT study

    Get PDF
    AbstractIn this study we present ab initio DFT calculations performed on stoichiometric and anion doped GaFeO3 substituting O by a C, N and S atom, respectively. Stoichiometric GaFeO3 has an antiferromagnetic (AFM) ground state. The Fe atoms of the sublattices Fe1 and Fe2 couple antiferromagnetically via the O atoms through the superexchange mechanism. Replacing the superexchange mediating O atom with p-elements of a different valence electron configuration changes the underlying magnetic exchange mechanism and influence the ground state properties. This may be used for tuning properties interesting for technical applications. Four different doping configurations were examined revealing a cell site dependent influence on the magnetic properties. Carbon, for example, changes the AFM coupling present in the Fe1–O–Fe2 configuration into a ferrimagnetic exchange for the Fe1–C–Fe2 bond. Depending on the respective cell site C substitution introduces a ferrimagnetic or AFM ground state. Nitrogen alters the ground state magnetic moment as well and sulfur introduces large structural distortions affecting the band gap and the overall AFM coupling inside the doped GaFeO3 simulation cell. We give a detailed discussion on the respective magnetic exchange mechanisms and electronic properties with regard to applications as photocatalysis and use the predictive power of ab initio DFT simulations that may trigger future experiments in the very promising field of tunable multifunctional devices

    Electronic and Magnetic Properties of Fe 2

    Get PDF
    The electronic and magnetic properties of the nitrides Fe2N and hypothetical FeN were investigated by use of the ASW method. For both nitrides, the calculations were done in the orthorhombic structure of Fe2N for the two nitrides. The magnetization is low (0.95 μB/at.) for Fe2N and vanishes for FeN. The decrease of the magnetization with increasing amount of N is assessed within the Fe-N system in a model derived from a Slater-Pauling type behavior. Accordingly, a trend from weak to strong ferromagnetism is suggested

    Thermodynamic properties of the itinerant-boson ferromagnet

    Full text link
    Thermodynamics of a spin-1 Bose gas with ferromagnetic interactions are investigated via the mean-field theory. It is apparently shown in the specific heat curve that the system undergoes two phase transitions, the ferromagnetic transition and the Bose-Einstein condensation, with the Curie point above the condensation temperature. Above the Curie point, the susceptibility fits the Curie-Weiss law perfectly. At a fixed temperature, the reciprocal susceptibility is also in a good linear relationship with the ferromagnetic interaction.Comment: 5 pages, 5 figure

    Spin waves in a Bose Ferromagnet

    Full text link
    It is shown that the ferromagnetic transition takes place always above Bose-Einstein condensation in ferromagnetically coupled spinor Bose gases. We describe the Bose ferromagnet within Ginzburg-Landau theory by a "two-fluid" model below Bose-Einstein condensation. Both the Bose condensate and the normal phase are spontaneously magnetized. As a main result we show that spin waves in the two fluids are coupled together so as to produce only one mixed spin-wave mode in the coexisting state. The long wavelength spectrum is quadratic in the wave vector k{\bf k}, consistent with usual ferromagnetism theory, and the spin-wave stiffness coefficient csc_s includes contributions from both the two phases, implying the "two-fluid" feature of the system. csc_s can show a sharp bend at the Bose-Einstein condensation temperature.Comment: 4 pages, 1 figur

    First-principles study of thin magnetic transition-metal silicide films on Si(001)

    Get PDF
    In order to combine silicon technology with the functionality of magnetic systems, a number of ferromagnetic (FM) materials have been suggested for the fabrication of metal/semiconductor heterojunctions. In this work, we present a systematic study of several candidate materials in contact with the Si surface. We employ density-functional theory calculations to address the thermodynamic stability and magnetism of both pseudomorphic CsCl-like MMSi (MM=Mn, Fe, Co, Ni) thin films and Heusler alloy M2M_2MnSi (MM=Fe, Co, Ni) films on Si(001). Our calculations show that Si-termination of the MMSi films is energetically preferable during epitaxy since it minimizes the energetic cost of broken bonds at the surface. Moreover, we can explain the calculated trends in thermodynamic stability of the MMSi thin films in terms of the MM-Si bond-strength and the MM 3d orbital occupation. From our calculations, we predict that ultrathin MnSi films are FM with sizable spin magnetic moments at the Mn atoms, while FeSi and NiSi films are nonmagnetic. However, CoSi films display itinerant ferromagnetism. For the M2M_2MnSi films with Heusler-type structure, the MnSi termination is found to have the highest thermodynamic stability. In the FM ground state, the calculated strength of the effective coupling between the magnetic moments of Mn atoms within the same layer approximately scales with the measured Curie temperatures of the bulk M2M_2MnSi compounds. In particular, the Co2_2MnSi/Si(001) thin film has a robust FM ground state as in the bulk, and is found to be stable against a phase separation into CoSi/Si(001) and MnSi/Si(001) films. Hence this material is of possible use in FM-Si heterojunctions and deserves further experimental investigations.Comment: 13 pages, 8 figure

    Magnetic properties of 3d-impurities substituted in GaAs

    Full text link
    We have calculated the magnetic properties of substituted 3d-impurities (Cr-Ni) in a GaAs host by means of first principles electronic structure calculations. We provide a novel model explaining the ferromagnetic long rang order of III-V dilute magnetic semiconductors. The origin of the ferromagnetism is shown to be due to delocalized spin-uncompensated As dangling bond electrons. Besides the quantitative prediction of the magnetic moments, our model provides an understanding of the halfmetallicity, and the raise of the critical temperature with the impurity concentration
    • …
    corecore