18 research outputs found

    Transforming carbon dioxide into jet fuel using an organic combustion-synthesized Fe-Mn-K catalyst.

    Get PDF
    Funder: King Abdulaziz City for Science and Technology (KACST); doi: https://doi.org/10.13039/501100004919With mounting concerns over climate change, the utilisation or conversion of carbon dioxide into sustainable, synthetic hydrocarbons fuels, most notably for transportation purposes, continues to attract worldwide interest. This is particularly true in the search for sustainable or renewable aviation fuels. These offer considerable potential since, instead of consuming fossil crude oil, the fuels are produced from carbon dioxide using sustainable renewable hydrogen and energy. We report here a synthetic protocol to the fixation of carbon dioxide by converting it directly into aviation jet fuel using novel, inexpensive iron-based catalysts. We prepare the Fe-Mn-K catalyst by the so-called Organic Combustion Method, and the catalyst shows a carbon dioxide conversion through hydrogenation to hydrocarbons in the aviation jet fuel range of 38.2%, with a yield of 17.2%, and a selectivity of 47.8%, and with an attendant low carbon monoxide (5.6%) and methane selectivity (10.4%). The conversion reaction also produces light olefins ethylene, propylene, and butenes, totalling a yield of 8.7%, which are important raw materials for the petrochemical industry and are presently also only obtained from fossil crude oil. As this carbon dioxide is extracted from air, and re-emitted from jet fuels when combusted in flight, the overall effect is a carbon-neutral fuel. This contrasts with jet fuels produced from hydrocarbon fossil sources where the combustion process unlocks the fossil carbon and places it into the atmosphere, in longevity, as aerial carbon - carbon dioxide

    Platinum supported on pristine and nitrogen-doped bowl-like broken hollow carbon spheres as oxygen reduction reaction catalysts

    No full text
    The development of active and durable proton exchange membrane fuel cell catalysts with high loading (ca. 40%) is critical for the commercialization of hydrogen fuel cells. Herein we report on the synthesis of a novel Pt/C catalyst using a novel bowl-like broken hollow carbon sphere (and N-doped sphere) support (carbon shell thickness ~ 4.6 nm). Highly dispersed Pt nanoparticles (dPt ~ 4 nm) were deposited on both supports and within the carbon shell. The Pt particles in the pores were exposed on both sides of the shell, while the shell porosity ensured pore confinement of the Pt. Both catalysts exhibited high electrochemical surface areas (60–65 m2 g−1) and cycling durability (6000 cycles) that was superior to a commercial benchmark Pt/C catalyst. These studies indicate that high loadings of confined small Pt particles on both sides of thin interconnected carbons can lead to high oxygen reduction reaction activities and durability

    Atomic Structure and Valence State of Cobalt Nanocrystals on Carbon under Syngas Versus Hydrogen Reduction

    Get PDF
    The composition of the reducing gas in the activation of Co Fischer-Tropsch synthesis catalysts determines the nature of the catalytically active Co species. This study reports on the effect of H2versus syngas (H2/CO = 2) on the reducibility of Co3O4nanoparticles supported on hollow carbon spheres, using ex situ and in situ high-resolution aberration-corrected analytical electron microscopy. High-resolution images revealed twinned fcc Co particles encapsulated in carbon from syngas treatment while H2-treated particles were mostly CoO. Moreover, the electron energy loss of the Co-L3,2and O-K edge fine structures show improved reducibility in syngas than in H2at 350 °C. The effect of high temperature on the reducibility of the Co3O4nanoparticles is also explored. Carbon fiber encapsulation of twinned fcc Co particles observed during the syngas treatment provides sinter resistance at high temperatures. Both ex situ and in situ results indicate that syngas activation is efficient for obtaining highly reduced Co nanoparticles at lower temperatures

    Unraveling the effects of surface functionalization on the catalytic activity of ReSe2 nanostructures towards the hydrogen evolution reaction

    No full text
    Herein, the surface functionalization of ReSe2 nanostructures by surfactants was investigated. This was done to understand how the use of various surfactants affects the catalytic activity of ReSe2 nanostructures towards the hydrogen evolution reaction (HER), and to determine which surfactant would result in maximal exposure of the active edge sites without impeding the catalytic processes of the HER. Oleylamine (OLA), oleic acid (OA), and trioctylphosphine oxide (TOPO) were used as the surfactants. Powder X-ray diffraction confirmed the formation of ReSe2 nanostructures that crystallized in a distorted 1 T phase triclinic system with a P-1 space group. The FTIR, XPS, NMR, and computational studies revealed that the surfactants bind to the surface of the ReSe2 nanostructures through their respective head groups. The ReSe2 nanostructures synthesized using TOPO (ReSe2-TOPO) had the lowest on-set potential, Tafel slope, and overpotential at 10 mA/cm2 at 73 mV, 58 mV/dec, and 171 mV, respectively. The catalytic performance of the nanostructures was significantly affected by their interaction with the surfactants. A high degree of passivation by the surfactant resulted in poor catalytic activity, and a lower degree of passivation resulted in excellent catalytic activity towards the HER

    Platinum Nanocatalysts Supported on Defective Hollow Carbon Spheres : Oxygen Reduction Reaction Durability Studies

    No full text
    The durability and long-term applicability of catalysts are critical parameters for the commercialization and adoption of fuel cells. Even though a few studies have been conducted on hollow carbon spheres (HCSs) as supports for Pt in oxygen reduction reactions (ORR) catalysis, in-depth durability studies have not been conducted thus far. In this study, Pt/HCSs and Pt/nitrogen-doped HCSs (Pt/NHCSs) were prepared using a reflux deposition technique. Small Pt particles were formed with deposition on the outside of the shell and inside the pores of the shell. The new catalysts demonstrated high activity (>380 μA cm−2 and 240 mA g−1) surpassing the commercial Pt/C by more than 10%. The catalysts demonstrated excellent durability compared to a commercial Pt/C in load cycling, experiencing less than 50% changes in the mass-specific activity (MA) and surface area-specific activity (SA). In stop-start durability cycling, the new materials demonstrated high stability with more than 50% retention of electrochemical active surface areas (ECSAs). The results can be rationalised by the high BET surface areas coupled with an array of meso and micropores that led to Pt confinement. Further, pair distribution function (PDF) analysis of the catalysts confirmed that the nitrogen and oxygen functional groups, as well as the shell curvature/roughness provided defects and nucleation sites for the deposition of the small Pt nanoparticles. The balance between graphitic and diamond-like carbon was critical for the electronic conductivity and to provide strong Pt-support anchoring
    corecore