Supplementary Information

Transforming Carbon Dioxide into Jet Fuel using an Organic Combustion-Synthesized Fe-Mn-K Catalyst

Benzhen Yao¹, Tiancun Xiao¹*, Ofentse A. Makgae², Xiangyu Jie^{1,3}, Sergio

Gonzalez-Cortes¹, Shaoliang Guan^{4,5}, Angus I. Kirkland^{2,6}, Jonathan R.

Dilworth¹, Hamid A. Al-Megren⁷, Saeed M. Alshihri⁷, Peter Dobson⁸, Gari

P. Owen ⁹, John M. Thomas ¹⁰, Peter P. Edwards ^{1**}

¹ KACST-Oxford Centre of Excellence in Petrochemicals, Inorganic Chemistry Laboratory,

University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.

² Department of Materials, University of Oxford, Parks Roads, Oxford OX1 3PH, UK.

³ Merton College, University of Oxford, Merton Street, Oxford, OX1 4JD

⁴ Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, UK.

⁵ Harwell-XPS – The EPSRC National Facility for Photoelectron Spectroscopy, Research Complex at Harwell (RCaH), Didcot, Oxon, OX11 0FA, UK.

⁶ Electron Physical Sciences Imaging Centre, Diamond Lightsource Ltd., OX11 0DE, U.K.

⁷ Materials Division, King Abdulaziz City for Science and Technology, Riyadh 11442, Kingdom of Saudi Arabia

⁸ The Queen's College, University of Oxford, Oxford OX1 4AW, UK

⁹ Annwyn Solutions, 76 Rochester Avenue, Bromley, Kent BR1 3DW, UK.

¹⁰ Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK

Corresponding author:

Dr. Tiancun Xiao, E-mail: xiao.tiancun@chem.ox.ac.uk; ORCID: 0000-0002-2278-3363 Professor Peter P. Edwards, E-mail: peter.edwards@chem.ox.ac.uk; ORCID: 0000-0002-1379-9400

Supplementary Figure 1 GC-FID chromatograms of the gaseous hydrocarbon products from the hydrogenation of CO₂, taken at a reaction time of 20 hours.

Supplementary Figure 2 XRD spectrum of catalysts (different transit metal) prepared with citric acid method

Supplementary Figure 3 XRD spectrum of the catalysts (different base metal) prepared with citric acid method

Supplementary Figure 4 XRD spectrum of the catalysts prepared with different organic compounds

Supplementary Figure 5 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Zn- K

Supplementary Figure 6 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Cu- K

Supplementary Figure 7 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn-Li

Supplementary Figure 8 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn-Na

Supplementary Figure 9 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn-Cs

Supplementary Figure 10 Catalytic performance of CO_2 hydrogenation on catalyst Fe-Mn- K without fuel method

Supplementary Figure 11 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn- K with urea method

Supplementary Figure 12 Catalytic performance of CO_2 hydrogenation on catalyst Fe-Mn- K with tannic acid method

Supplementary Figure 13 Catalytic performance of CO_2 hydrogenation on catalyst Fe-Mn- K with EDTA method

Supplementary Figure 14 Catalytic performance of CO_2 hydrogenation on catalyst Fe-Mn- K with glycine method

Supplementary Figure 15 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn- K with oxalic acid method

Supplementary Figure 16 Catalytic performance of CO_2 hydrogenation on catalyst Fe-Mn-K with NTA method

Supplementary Figure 17 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn-K with DTPA method

Supplementary Figure 18 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn-K with tartaric acid method

Supplementary Figure 19 Catalytic performance of CO_2 hydrogenation on catalyst Fe-Mn-K with HEDTA method

Supplementary Figure 20 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn-K with Salicylic acid method

Supplementary Figure 21 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn-K with sugar method

Supplementary Figure 22 Catalytic performance of CO₂ hydrogenation on catalyst Fe-Mn-K with flour powder method

Supplementary Figure 23 TGA results of catalyst precursor of Fe-Mn-K (citric acid method)

Supplementary Figure 24 XRD spectrum of Fe₃O₄ sample (black), sample treated at CO₂ atmosphere 350 °C for 16 hours(red) and sample treated at CO₂ atmosphere and then treated at 5%H₂/N₂ atmosphere at 350 °C for 16 hours respectively (blue)