655 research outputs found

    Universal properties of knotted polymer rings

    Full text link
    By performing Monte Carlo sampling of NN-steps self-avoiding polygons embedded on different Bravais lattices we explore the robustness of universality in the entropic, metric and geometrical properties of knotted polymer rings. In particular, by simulating polygons with NN up to 10510^5 we furnish a sharp estimate of the asymptotic values of the knot probability ratios and show their independence on the lattice type. This universal feature was previously suggested although with different estimates of the asymptotic values. In addition we show that the scaling behavior of the mean squared radius of gyration of polygons depends on their knot type only through its correction to scaling. Finally, as a measure of the geometrical self-entanglement of the SAPs we consider the standard deviation of the writhe distribution and estimate its power-law behavior in the large NN limit. The estimates of the power exponent do depend neither on the lattice nor on the knot type, strongly supporting an extension of the universality property to some features of the geometrical entanglement.Comment: submitted to Phys.Rev.

    What is the maximum rate at which entropy of a string can increase?

    Full text link
    According to Susskind, a string falling toward a black hole spreads exponentially over the stretched horizon due to repulsive interactions of the string bits. In this paper such a string is modeled as a self-avoiding walk and the string entropy is found. It is shown that the rate at which information/entropy contained in the string spreads is the maximum rate allowed by quantum theory. The maximum rate at which the black hole entropy can increase when a string falls into a black hole is also discussed.Comment: 11 pages, no figures; formulas (18), (20) are corrected (the quantum constant is added), a point concerning a relation between the Hawking and Hagedorn temperatures is corrected, conclusions unchanged; accepted by Physical Review D for publicatio

    Current reversal and exclusion processes with history-dependent random walks

    Get PDF
    A class of exclusion processes in which particles perform history-dependent random walks is introduced, stimulated by dynamic phenomena in some biological and artificial systems. The particles locally interact with the underlying substrate by breaking and reforming lattice bonds. We determine the steady-state current on a ring, and find current-reversal as a function of particle density. This phenomenon is attributed to the non-local interaction between the walkers through their trails, which originates from strong correlations between the dynamics of the particles and the lattice. We rationalize our findings within an effective description in terms of quasi-particles which we call front barriers. Our analytical results are complemented by stochastic simulations.Comment: 5 pages, 6 figure

    Self-avoiding walks crossing a square

    Full text link
    We study a restricted class of self-avoiding walks (SAW) which start at the origin (0, 0), end at (L,L)(L, L), and are entirely contained in the square [0,L]×[0,L][0, L] \times [0, L] on the square lattice Z2{\mathbb Z}^2. The number of distinct walks is known to grow as λL2+o(L2)\lambda^{L^2+o(L^2)}. We estimate λ=1.744550±0.000005\lambda = 1.744550 \pm 0.000005 as well as obtaining strict upper and lower bounds, 1.628<λ<1.782.1.628 < \lambda < 1.782. We give exact results for the number of SAW of length 2L+2K2L + 2K for K=0,1,2K = 0, 1, 2 and asymptotic results for K=o(L1/3)K = o(L^{1/3}). We also consider the model in which a weight or {\em fugacity} xx is associated with each step of the walk. This gives rise to a canonical model of a phase transition. For x<1/μx < 1/\mu the average length of a SAW grows as LL, while for x>1/μx > 1/\mu it grows as L2L^2. Here μ\mu is the growth constant of unconstrained SAW in Z2{\mathbb Z}^2. For x=1/μx = 1/\mu we provide numerical evidence, but no proof, that the average walk length grows as L4/3L^{4/3}. We also consider Hamiltonian walks under the same restriction. They are known to grow as τL2+o(L2)\tau^{L^2+o(L^2)} on the same L×LL \times L lattice. We give precise estimates for τ\tau as well as upper and lower bounds, and prove that τ<λ.\tau < \lambda.Comment: 27 pages, 9 figures. Paper updated and reorganised following refereein

    Mathematical Models for Estimating the Risk of vCJD Transmission

    Get PDF
    We present two different simple models for vCJD transmission by blood transfusion. Both models indicate that transfusions alone are unlikely to cause more than a few infections, unless the number of primary cases increases. To improve our models, future work should pursue data collection, empirical estimation of the model parameters, and examination of the underlying assumptions of our frameworks. Further improvements could also include examining susceptibility to vCJD infection by age group and iatrogenic infections introduced through surgical instruments. Regarding the latter, it may be worthwhile to conduct experiments to quantify the transmission of prions from an infected surgical instrument after repeated sterilization procedures

    Determination of the exponent gamma for SAWs on the two-dimensional Manhattan lattice

    Full text link
    We present a high-statistics Monte Carlo determination of the exponent gamma for self-avoiding walks on a Manhattan lattice in two dimensions. A conservative estimate is \gamma \gtapprox 1.3425(3), in agreement with the universal value 43/32 on regular lattices, but in conflict with predictions from conformal field theory and with a recent estimate from exact enumerations. We find strong corrections to scaling that seem to indicate the presence of a non-analytic exponent Delta < 1. If we assume Delta = 11/16 we find gamma = 1.3436(3), where the error is purely statistical.Comment: 24 pages, LaTeX2e, 4 figure

    Dynamic Critical Behavior of an Extended Reptation Dynamics for Self-Avoiding Walks

    Full text link
    We consider lattice self-avoiding walks and discuss the dynamic critical behavior of two dynamics that use local and bilocal moves and generalize the usual reptation dynamics. We determine the integrated and exponential autocorrelation times for several observables, perform a dynamic finite-size scaling study of the autocorrelation functions, and compute the associated dynamic critical exponents zz. For the variables that describe the size of the walks, in the absence of interactions we find z2.2z \approx 2.2 in two dimensions and z2.1z\approx 2.1 in three dimensions. At the θ\theta-point in two dimensions we have z2.3z\approx 2.3.Comment: laTeX2e, 32 pages, 11 eps figure

    Polymer-mediated entropic forces between scale-free objects

    Full text link
    The number of configurations of a polymer is reduced in the presence of a barrier or an obstacle. The resulting loss of entropy adds a repulsive component to other forces generated by interaction potentials. When the obstructions are scale invariant shapes (such as cones, wedges, lines or planes) the only relevant length scales are the polymer size R_0 and characteristic separations, severely constraining the functional form of entropic forces. Specifically, we consider a polymer (single strand or star) attached to the tip of a cone, at a separation h from a surface (or another cone). At close proximity, such that h<<R_0, separation is the only remaining relevant scale and the entropic force must take the form F=AkT/h. The amplitude A is universal, and can be related to exponents \eta governing the anomalous scaling of polymer correlations in the presence of obstacles. We use analytical, numerical and epsilon-expansion techniques to compute the exponent \eta for a polymer attached to the tip of the cone (with or without an additional plate or cone) for ideal and self-avoiding polymers. The entropic force is of the order of 0.1 pN at 0.1 micron for a single polymer, and can be increased for a star polymer.Comment: LaTeX, 15 pages, 4 eps figure

    The Length of an SLE - Monte Carlo Studies

    Full text link
    The scaling limits of a variety of critical two-dimensional lattice models are equal to the Schramm-Loewner evolution (SLE) for a suitable value of the parameter kappa. These lattice models have a natural parametrization of their random curves given by the length of the curve. This parametrization (with suitable scaling) should provide a natural parametrization for the curves in the scaling limit. We conjecture that this parametrization is also given by a type of fractal variation along the curve, and present Monte Carlo simulations to support this conjecture. Then we show by simulations that if this fractal variation is used to parametrize the SLE, then the parametrized curves have the same distribution as the curves in the scaling limit of the lattice models with their natural parametrization.Comment: 18 pages, 10 figures. Version 2 replaced the use of "nu" for the "growth exponent" by 1/d_H, where d_H is the Hausdorff dimension. Various minor errors were also correcte

    On the size of knots in ring polymers

    Full text link
    We give two different, statistically consistent definitions of the length l of a prime knot tied into a polymer ring. In the good solvent regime the polymer is modelled by a self avoiding polygon of N steps on cubic lattice and l is the number of steps over which the knot ``spreads'' in a given configuration. An analysis of extensive Monte Carlo data in equilibrium shows that the probability distribution of l as a function of N obeys a scaling of the form p(l,N) ~ l^(-c) f(l/N^D), with c ~ 1.25 and D ~ 1. Both D and c could be independent of knot type. As a consequence, the knot is weakly localized, i.e. ~ N^t, with t=2-c ~ 0.75. For a ring with fixed knot type, weak localization implies the existence of a peculiar characteristic length l^(nu) ~ N^(t nu). In the scaling ~ N^(nu) (nu ~0.58) of the radius of gyration of the whole ring, this length determines a leading power law correction which is much stronger than that found in the case of unrestricted topology. The existence of such correction is confirmed by an analysis of extensive Monte Carlo data for the radius of gyration. The collapsed regime is studied by introducing in the model sufficiently strong attractive interactions for nearest neighbor sites visited by the self-avoiding polygon. In this regime knot length determinations can be based on the entropic competition between two knotted loops separated by a slip link. These measurements enable us to conclude that each knot is delocalized (t ~ 1).Comment: 29 pages, 14 figure
    corecore