573 research outputs found
Renal replacement modality and stroke risk in end-stage renal disease—a national registry study
Background:
The risk of stroke in end-stage renal disease (ESRD) on renal replacement therapy (RRT) is up to 10-fold greater than the general population. However, whether this increased risk differs by RRT modality is unclear.
Methods:
We used data contained in the Scottish Renal Registry and the Scottish Stroke Care Audit to identify stroke in all adult patients who commenced RRT for ESRD from 2005 to 2013. Incidence rate was calculated and regression analyses were performed to identify variables associated with stroke. We explored the effect of RRT modality at initiation and cumulative dialysis exposure by time-dependent regression analysis, using transplant recipients as the reference group.
Results:
A total of 4957 patients commenced RRT for ESRD. Median age was 64.5 years, 41.5% were female and 277 patients suffered a stroke (incidence rate was 18.6/1000 patient-years). Patients who had stroke were older, had higher blood pressure and were more likely to be female and have diabetes. On multivariable regression older age, female sex, diabetes and higher serum phosphate were associated with risk of stroke. RRT modality at initiation was not. On time-dependent analysis, haemodialysis (HD) exposure was independently associated with increased risk of stroke.
Conclusions:
In patients with ESRD who initiate RRT, HD use independently increases risk of stroke compared with transplantation. Use of peritoneal dialysis did not increase risk on adjusted analysis
Use of novel DNA methylation signatures to distinguish between human airway structural cell types
INTRODUCTION: Chronic inflammatory and fibrotic lung diseases like asthma, COPD and pulmonary fibrosis are characterised by modified phenotype of the airway structural cells. Airway walls are comprised of a robust epithelial layer that lines the lumen followed by the basement membrane, submucosa predominantly composed of fibroblasts and finally enveloped by a bulk of smooth muscle cells that determine the relaxation and constriction of the airways. The phenotype of airway structural cells is determined by epigenetic alterations such as DNA methylation, which alters the activation status of a range of important inflammatory and remodelling genes. Here we determined if airway structural cells (Epithelial cells, fibroblasts and smooth muscle cells) have different DNA methylome signatures that can be used to distinguish between them. This will offer a reference standard for identifying cell type specific DNA methylation changes induced by various inflammatory stimuli.
EXPERIMENTAL METHODS: Illumina Human Methylation 450K Beadchip (HM450K) was used to perform genome-wide methylome screening on 17 bronchial fibroblast (BrF), 23 lung parenchymal fibroblast (LgF), 17 airway epithelial cell (Ep) and 6 airway smooth muscle cell (ASM) samples isolated from healthy individuals. The data was normalised using funtoonorm, a specialised algorithm in R developed for multiple tissue types. R packages minfi, limma and DMRcate was used for CpG site exclusion and identification of significant differentially methylated regions (DMR) specific to each of the four cell types.
RESULTS AND DISCUSSION: Epithelial cells distinctly separated from other lung cells (791 DMR). LgF, BrF and ASM had 13, 10 and 1 signature DMR respectively. Despite close anatomical proximity, ASM and BrF displayed 2 DMR when compared to each other. Interestingly, fibroblasts obtained from airway showed 6 DMR in comparison to those obtained from lung parenchyma, suggesting that the same cell type obtained from different parts of the lung can have significantly different methylation patterns that might lead to phenotypic differences.
CONCLUSION: We have identified cell and tissue specific methylation signatures which can be used to differentiate between different types of airway structural cells. The airway epithelial cells showed the greatest separation from other airway structural cells. The Bronchial fibroblasts varied minimally from airway smooth muscle cells despite its significant separation from airway epithelial cells and parenchymal fibroblasts
Clinical selection strategies to identify ischemic stroke patients with large anterior vessel occlusion: results from SITS-ISTR (Safe Implementation of Thrombolysis in Stroke International Stroke Thrombolysis Registry)
Background and Purpose—The National Institutes of Health Stroke Scale (NIHSS) correlates with presence of large anterior vessel occlusion (LAVO). However, the application of the full NIHSS in the prehospital setting to select patients eligible for treatment with thrombectomy is limited. Therefore, we aimed to evaluate the prognostic value of simple clinical selection strategies.
Methods—Data from the Safe Implementation of Thrombolysis in Stroke International Stroke Thrombolysis Registry (January 2012–May 2014) were analyzed retrospectively. Patients with complete breakdown of NIHSS scores and documented vessel status were included. We assessed the association of prehospital stroke scales and NIHSS symptom profiles with LAVO (internal carotid artery, carotid-terminus or M1-segment of the middle cerebral artery).
Results—Among 3505 patients, 23.6% (n=827) had LAVO. Pathological finding on the NIHSS item best gaze was strongly associated with LAVO (adjusted odds ratio 4.5, 95% confidence interval 3.8–5.3). All 3 face–arm–speech–time test (FAST) items identified LAVO with high sensitivity. Addition of the item gaze to the original FAST score (G-FAST) or high scores on other simplified stroke scales increased specificity. The NIHSS symptom profiles representing total anterior syndromes showed a 10-fold increased likelihood for LAVO compared with a nonspecific clinical profile. If compared with an NIHSS threshold of ≥6, the prehospital stroke scales performed similarly or even better without losing sensitivity.
Conclusions—Simple modification of the face–arm–speech–time score or evaluating the NIHSS symptom profile may help to stratify patients’ risk of LAVO and to identify individuals who deserve rapid transfer to comprehensive stroke centers. Prospective validation in the prehospital setting is required
Omega-3 polyunsaturated fatty acid supplementation for improving peripheral nerve health: Protocol for a systematic review
Introduction
Damage to peripheral nerves occurs in a variety of health conditions. Preserving nerve integrity, to prevent progressive nerve damage, remains a clinical challenge. Omega-3 polyunsaturated fatty acids (PUFAs) are implicated in the development and maintenance of healthy nerves and may be beneficial for promoting peripheral nerve health. The aim of this systematic review is to assess the effects of oral omega-3 PUFA supplementation on peripheral nerve integrity, including both subjective and objective measures of peripheral nerve structure and/or function.
Methods and analysis
A systematic review of randomised controlled trials that have evaluated the effects of omega-3 PUFA supplementation on peripheral nerve assessments will be conducted. Comprehensive electronic database searches will be performed in Ovid MEDLINE, Embase, the Cochrane Central Register of Controlled Trials (CENTRAL), US National Institutes of Health Clinical Trials Registry and the WHO International Clinical Trials Registry Platform. The title, abstract and keywords of identified articles will be assessed for eligibility by two reviewers. Full-text articles will be obtained for all studies judged as eligible or potentially eligible; these studies will be independently assessed by two reviewers to determine eligibility. Disagreements will be resolved by consensus. Risk of bias assessment will be performed using the Cochrane Collaboration risk of bias tool to appraise the quality of included studies. If clinically meaningful, and there are a sufficient number of eligible studies, a meta-analysis will be conducted and a summary of findings table will be provided.
Ethics and dissemination
This is a systematic review that will involve the analysis of previously published data, and therefore ethics approval is not required. A manuscript reporting the results of this systematic review will be published in a peer-reviewed journal and may also be presented at relevant scientific conferences
Reorientation transition of ultrathin ferromagnetic films
We demonstrate that the reorientation transition from out-of-plane to
in-plane magnetization with decreasing temperature as observed experimentally
in Ni-films on Cu(001) can be explained on a microscopic basis. Using a
combination of mean field theory and perturbation theory, we derive an analytic
expression for the temperature dependent anisotropy. The reduced magnetization
in the film surface at finite temperatures plays a crucial role for this
transition as with increasing temperature the influence of the uniaxial
anisotropies is reduced at the surface and is enhanced inside the film.Comment: 4 pages(RevTeX), 3 figures (EPS
Phase diagram of an Ising model with long-range frustrating interactions: a theoretical analysis
We present a theoretical study of the phase diagram of a frustrated Ising
model with nearest-neighbor ferromagnetic interactions and long-range
(Coulombic) antiferromagnetic interactions. For nonzero frustration, long-range
ferromagnetic order is forbidden, and the ground-state of the system consists
of phases characterized by periodically modulated structures. At finite
temperatures, the phase diagram is calculated within the mean-field
approximation. Below the transition line that separates the disordered and the
ordered phases, the frustration-temperature phase diagram displays an infinite
number of ``flowers'', each flower being made by an infinite number of
modulated phases generated by structure combination branching processes. The
specificities introduced by the long-range nature of the frustrating
interaction and the limitation of the mean-field approach are finally
discussed.Comment: 32 pages, 7 figure
Investigating genome wide DNA methylation in bronchial and lung fibroblasts from healthy individuals and individuals with COPD
Rationale: Lung fibroblasts are implicated in respiratory disease pathology including chronic obstructive pulmonary disease (COPD). Phenotypic differences between fibroblasts isolated from the bronchi versus the lung parenchyma have been described but no studies have compared the cell types on a genome wide scale. DNA methylation is a reversible modification of the DNA structure with the ability to affect cell function via the alteration of gene expression. Here we compared genome wide DNA methylation profiles from bronchial and lung fibroblasts and assessed modification to these profiles in cells isolated from individuals with COPD.
Methods: DNA was isolated from lung (LgF) and bronchial fibroblasts (BrF) at passage 4 and bisulphite treated. Site specific, quantitative genome wide methylation was determined using the Illumina 450K Infinium Methylation BeadChip array. Linear modelling and DMRcate functions identified differentially methylated sites and regions respectively between BrF and LgF and from cells isolated from healthy individuals versus those with COPD.
Results: 3980 CpG (methylation) sites significantly differed, following Bonferroni correction, between BrF and LgF isolated from healthy individuals. These sites had a broad distribution of effect size, with 240 CpG sites displaying a difference in methylation of >50%. 78 of these sites were validated in a second cohort of matched BrF and LgF isolated from the same individuals. There was genomic proximity to these sites and DMRcate was used to refine the individual CpG sites to 5 regions of interest associated with 5 genes; HLX, TWIST1, CREB5, SKAP2 and PRDM16. Differences in methylation were less pronounced when comparing cells isolated from healthy individuals to those with COPD. In BrF 47 DMRcate regions were identified with a maximum difference in methylation of at least 20%. In LgF 3 DMRcate regions were identified with a maximum difference in methylation of at least 20%.
Conclusions: DNA methylation profiles are significantly different between BrF and LgF but only small modifications are associated with COPD. Future work will focus on validating a methylation based marker of lung versus bronchial fibroblasts to differentiate cell types by validating our differential DNA methylation observations with gene/protein expression
Dipolar interaction between two-dimensional magnetic particles
We determine the effective dipolar interaction between single domain
two-dimensional ferromagnetic particles (islands or dots), taking into account
their finite size. The first correction term decays as 1/D^5, where D is the
distance between particles. If the particles are arranged in a regular
two-dimensional array and are magnetized in plane, we show that the correction
term reinforces the antiferromagnetic character of the ground state in a square
lattice, and the ferromagnetic one in a triangular lattice. We also determine
the dipolar spin-wave spectrum and evaluate how the Curie temperature of an
ensemble of magnetic particles scales with the parameters defining the particle
array: height and size of each particle, and interparticle distance. Our
results show that dipolar coupling between particles might induce ferromagnetic
long range order at experimentally relevant temperatures. However, depending on
the size of the particles, such a collective phenomenon may be disguised by
superparamagnetism.Comment: 11 pages, 5 figure
The association of atrial fibrillation and ischaemic stroke in patients on haemodialysis: a competing risk analysis
Background:
Stroke is common in patients with end-stage renal disease (ESRD) treated with hemodialysis (HD) and associated with high mortality rate. In the general population, atrial fibrillation (AF) is a major risk factor for stroke and therapeutic anticoagulation is associated with risk reduction, whereas in ESRD the relationship is less clear.
Objective:
The purpose of this study is to demonstrate the influence of AF on stroke rates and probability in those on HD following competing risk analyses.
Design:
A national record linkage cohort study.
Setting:
All renal and stroke units in Scotland, UK.
Patients:
All patients with ESRD receiving HD within Scotland from 2005 to 2013 (follow-up to 2015).
Measurements:
Demographic, clinical, and laboratory data were linked between the Scottish Renal Registry, Scottish Stroke Care Audit, and hospital discharge data. Stroke was defined as a fatal or nonfatal event and mortality derived from national records.
Methods:
Associations for stroke were determined using competing risk models: the cause-specific hazards model and the Fine and Gray subdistribution hazards model accounting for the competing risk of death in models of all stroke, ischemic stroke, and first-ever stroke.
Results:
Of 5502 patients treated with HD with 12 348.6-year follow-up, 363 (6.6%) experienced stroke. The stroke incidence rate was 26.7 per 1000 patient-years. Multivariable regression on the cause-specific hazard for stroke demonstrated age, hazard ratio (HR) (95% confidence interval [CI]) = 1.04 (1.03-1.05); AF, HR (95% CI) = 1.88 (1.25-2.83); prior stroke, HR (95% CI) = 2.29 (1.48-3.54), and diabetes, HR (95% CI) = 1.92 (1.45-2.53); serum phosphate, HR (95% CI) = 2.15 (1.56-2.99); lower body weight, HR (95% CI) = 0.99 (0.98-1.00); lower hemoglobin, HR (95% CI) = 0.88 (0.77-0.99); and systolic blood pressure (BP), HR (95% CI) = 1.01 (1.00-1.02), to be associated with an increased stroke rate. In contrast, the subdistribution HRs obtained following Fine and Gray regression demonstrated that AF, weight, and hemoglobin were not associated with stroke risk. In both models, AF was significantly associated with nonstroke death.
Limitations:
Our analyses derive from retrospective data sets and thus can only describe association not causation. Data on anticoagulant use are not available.
Conclusions:
The incidence of stroke in HD patients is high. The competing risk of “prestroke” mortality affects the relationship between AF and risk of future stroke. Trial designs for interventions to reduce stroke risk in HD patients, such as anticoagulation for AF, should take account of competing risks affecting associations between risk factors and outcomes
- …