2,838 research outputs found
Strong field dynamics with ultrashort electron wave packet replicas
We investigate theoretically electron dynamics under a VUV attosecond pulse
train which has a controlled phase delay with respect to an additional strong
infrared laser field. Using the strong field approximation and the fact that
the attosecond pulse is short compared to the excited electron dynamics, we
arrive at a minimal analytical model for the kinetic energy distribution of the
electron as well as the photon absorption probability as a function of the
phase delay between the fields. We analyze the dynamics in terms of electron
wave packet replicas created by the attosecond pulses. The absorption
probability shows strong modulations as a function of the phase delay for VUV
photons of energy comparable to the binding energy of the electron, while for
higher photon energies the absorption probability does not depend on the delay,
in line with the experimental observations for helium and argon, respectively.Comment: 14 pages, 8 figure
Quantum dynamics of long-range interacting systems using the positive-P and gauge-P representations
We provide the necessary framework for carrying out stochastic positive-P and
gauge-P simulations of bosonic systems with long range interactions. In these
approaches, the quantum evolution is sampled by trajectories in phase space,
allowing calculation of correlations without truncation of the Hilbert space or
other approximations to the quantum state. The main drawback is that the
simulation time is limited by noise arising from interactions.
We show that the long-range character of these interactions does not further
increase the limitations of these methods, in contrast to the situation for
alternatives such as the density matrix renormalisation group. Furthermore,
stochastic gauge techniques can also successfully extend simulation times in
the long-range-interaction case, by making using of parameters that affect the
noise properties of trajectories, without affecting physical observables.
We derive essential results that significantly aid the use of these methods:
estimates of the available simulation time, optimized stochastic gauges, a
general form of the characteristic stochastic variance and adaptations for very
large systems. Testing the performance of particular drift and diffusion gauges
for nonlocal interactions, we find that, for small to medium systems, drift
gauges are beneficial, whereas for sufficiently large systems, it is optimal to
use only a diffusion gauge.
The methods are illustrated with direct numerical simulations of interaction
quenches in extended Bose-Hubbard lattice systems and the excitation of Rydberg
states in a Bose-Einstein condensate, also without the need for the typical
frozen gas approximation. We demonstrate that gauges can indeed lengthen the
useful simulation time.Comment: 19 pages, 11 appendix, 3 figure
Femtosecond Photodissociation of Molecules Facilitated by Noise
We investigate the dynamics of diatomic molecules subjected to both a
femtosecond mid-infrared laser pulse and Gaussian white noise. The stochastic
Schr\"odinger equation with a Morse potential is used to describe the molecular
vibrations under noise and the laser pulse. For weak laser intensity, well
below the dissociation threshold, it is shown that one can find an optimum
amount of noise that leads to a dramatic enhancement of the dissociation
probability. The enhancement landscape which is shown as a function of both the
noise and the laser strength, exhibits a global maximum. A frequency-resolved
gain profile is recorded with a pump-probe set-up which is experimentally
realizable. With this profile we identify the linear and nonlinear multiphoton
processes created by the interplay between laser and noise and assess their
relative contribution to the dissociation enhancement.Comment: 5 pages,5 figure
Optimal Stochastic Enhancement of Photoionization
The effect of noise on the nonlinear photoionization of an atom due to a
femtosecond pulse is investigated in the framework of the stochastic
Schr\"odinger equation. A modest amount of white noise results in an
enhancement of the net ionization yield by several orders of magnitude, giving
rise to a form of quantum stochastic resonance. We demonstrate that this effect
is preserved if the white noise is replaced by broadband chaotic light.Comment: 4 pages, 4 figure
Fast coarsening in unstable epitaxy with desorption
Homoepitaxial growth is unstable towards the formation of pyramidal mounds
when interlayer transport is reduced due to activation barriers to hopping at
step edges. Simulations of a lattice model and a continuum equation show that a
small amount of desorption dramatically speeds up the coarsening of the mound
array, leading to coarsening exponents between 1/3 and 1/2. The underlying
mechanism is the faster growth of larger mounds due to their lower evaporation
rate.Comment: 4 pages, 4 PostScript figure
Molecular effects in the ionization of N, O and F by intense laser fields
In this paper we study the response in time of N, O and F to
laser pulses having a wavelength of 390nm. We find single ionization
suppression in O and its absence in F, in accordance with experimental
results at nm. Within our framework of time-dependent density
functional theory we are able to explain deviations from the predictions of
Intense-Field Many-Body -Matrix Theory (IMST). We confirm the connection of
ionization suppression with destructive interference of outgoing electron waves
from the ionized electron orbital. However, the prediction of ionization
suppression, justified within the IMST approach through the symmetry of the
highest occupied molecular orbital (HOMO), is not reliable since it turns out
that, e.g. in the case of F, the electronic response to the laser pulse is
rather complicated and does not lead to dominant depletion of the HOMO.
Therefore, the symmetry of the HOMO is not sufficient to predict ionization
suppression. However, at least for F, the symmetry of the dominantly
ionized orbital is consistent with the non-suppression of ionization.Comment: 19 pages, 5 figure
Femtosecond Photoionization of Atoms under Noise
We investigate the effect of incoherent perturbations on atomic
photoionization due to a femtosecond mid-infrared laser pulse by solving the
time-dependent stochastic Schr\"odinger equation. For a weak laser pulse which
causes almost no ionization, an addition of a Gaussian white noise to the pulse
leads to a significantly enhanced ionization probability. Tuning the noise
level, a stochastic resonance-like curve is observed showing the existence of
an optimum noise for a given laser pulse. Besides studying the sensitivity of
the obtained enhancement curve on the pulse parameters, such as the pulse
duration and peak amplitude, we suggest that experimentally realizable
broadband chaotic light can also be used instead of the white noise to observe
similar features. The underlying enhancement mechanism is analyzed in the
frequency-domain by computing a frequency-resolved atomic gain profile, as well
as in the time-domain by controlling the relative delay between the action of
the laser pulse and noise.Comment: 10 pages, 10 figure
Semiclassical initial value calculations of collinear helium atom
Semiclassical calculations using the Herman-Kluk initial value treatment are
performed to determine energy eigenvalues of bound and resonance states of the
collinear helium atom. Both the configuration (where the classical motion
is fully chaotic) and the configuration (where the classical dynamics is
nearly integrable) are treated. The classical motion is regularized to remove
singularities that occur when the electrons collide with the nucleus. Very good
agreement is obtained with quantum energies for bound and resonance states
calculated by the complex rotation method.Comment: 24 pages, 3 figures. Submitted to J. Phys.
Coulomb crystallization in expanding laser-cooled neutral plasmas
We present long-time simulations of expanding ultracold neutral plasmas,
including a full treatment of the strongly coupled ion dynamics. Thereby, the
relaxation dynamics of the expanding laser-cooled plasma is studied, taking
into account elastic as well as inelastic collisions. It is demonstrated that,
depending on the initial conditions, the ionic component of the plasma may
exhibit short-range order or even a superimposed long-range order resulting in
concentric ion shells. In contrast to ionic plasmas confined in traps, the
shell structures are built up from the center of the plasma cloud rather than
from the periphery
Correlations of Rydberg excitations in an ultra-cold gas after an echo sequence
We show that Rydberg states in an ultra-cold gas can be excited with strongly
preferred nearest-neighbor distance if densities are well below saturation. The
scheme makes use of an echo sequence in which the first half of a laser pulse
excites Rydberg states while the second half returns atoms to the ground state,
as in the experiment of Raitzsch et al. [Phys. Rev. Lett. 100 (2008) 013002].
Near to the end of the echo sequence, almost any remaining Rydberg atom is
separated from its next-neighbor Rydberg atom by a distance slightly larger
than the instantaneous blockade radius half-way through the pulse. These
correlations lead to large deviations of the atom counting statistics from a
Poissonian distribution. Our results are based on the exact quantum evolution
of samples with small numbers of atoms. We finally demonstrate the utility of
the omega-expansion for the approximate description of correlation dynamics
through an echo sequence.Comment: 8 pages, 6 figure
- …