14 research outputs found

    Pressure-induced polymorphism in cyclopropylamine

    Get PDF

    Controlling ligand substitution reactions of organometallic complexes: Tuning cancer cell cytotoxicity

    Get PDF
    Organometallic compounds offer broad scope for the design of therapeutic agents, but this avenue has yet to be widely explored. A key concept in the design of anticancer complexes is optimization of chemical reactivity to allow facile attack on the target site (e.g., DNA) yet avoid attack on other sites associated with unwanted side effects. Here, we consider how this result can be achieved for monofunctional “piano-stool” ruthenium(II) arene complexes of the type [(η(6)-arene)Ru(ethylenediamine)(X)](n)(+). A potentially important activation mechanism for reactions with biomolecules is hydrolysis. Density functional calculations suggested that aquation (substitution of X by H(2)O) occurs by means of a concerted ligand interchange mechanism. We studied the kinetics and equilibria for hydrolysis of 21 complexes, containing, as X, halides and pseudohalides, pyridine (py) derivatives, and a thiolate, together with benzene (bz) or a substituted bz as arene, using UV-visible spectroscopy, HPLC, and electrospray MS. The x-ray structures of six complexes are reported. In general, complexes that hydrolyze either rapidly {e.g., X = halide [arene = hexamethylbenzene (hmb)]} or moderately slowly [e.g., X = azide, dichloropyridine (arene = hmb)] are active toward A2780 human ovarian cancer cells, whereas complexes that do not aquate (e.g., X = py) are inactive. An intriguing exception is the X = thiophenolate complex, which undergoes little hydrolysis and appears to be activated by a different mechanism. The ability to tune the chemical reactivity of this class of organometallic ruthenium arene compounds should be useful in optimizing their design as anticancer agents

    Crystallography under high pressures

    No full text
    This chapter highlights the area of crystallography of molecular systems under high-pressure conditions. It is an area of crystallography that has seen a rapid expansion over the last two decades. Advances in technology and data processing have facilitated the discovery of new materials, polymorphs and chemistries under extreme conditions. We discuss these advances using examples of organic and metal-organic materials as well as providing guidance to the pitfalls to be avoided conducting these studies

    Dual antiplatelet therapy duration after coronary stenting in clinical practice: results of an EAPCI survey

    No full text
    Aims: Our aim was to report on a survey initiated by the EuropeanAssociation of Percutaneous Cardiovascular Interventions (EAPCI) concerning opinion on the evidence relating to dual antiplatelet therapy (DAPT) duration after coronary stenting.Methods and results: Results from three randomised clinical trials were scheduled to be presented at the American Heart Association Scientific Sessions 2014 (ARIA 2014). A web-based survey was distributed to all individuals registered in the EuroIntervention mailing list (n=15,200) both before and after ARIA 2014. A total of 1,134 physicians responded to the first (i.e., before AHA 2014) and 542 to the second (i.e., after ARIA 2014) survey. The majority of respondents interpreted trial results consistent with a substantial equipoise regarding the benefits and risks of an extended versus a standard DAPT strategy. Two respondents out of ten believed extended DAFT should be implemented in selected patients. After ARIA 2014, 46.1% of participants expressed uncertainty about the available evidence on DAFT duration, and 40.0% the need for clinical guidance.Conclusions: This EAPCI survey highlights considerable uncertainty within the medical community with regard to the optimal duration of DAFT after coronary stenting in the light of recent reported trial results. Updated recommendations for practising physicians to guide treatment decisions in routine clinical practice should be provided by international societies
    corecore