1,330 research outputs found

    Lifetime of Majorana qubits in Rashba nanowires with non-uniform chemical potential

    Full text link
    We study the lifetime of topological qubits based on Majorana bound states hosted in a one-dimensional Rashba nanowire (NW) with proximity-induced superconductivity and non-uniform chemical potential needed for manipulation and read-out. If nearby gates tune the chemical potential locally so that part of the NW is in the trivial phase, Andreev bound states (ABSs) can emerge which are localized at the interface between topological and trivial phases with energies significantly less than the gap. The emergence of such subgap states strongly decreases the Majorana qubit lifetime at finite temperatures due to local perturbations that can excite the system into these ABSs. Using Keldysh formalism, we study such excitations caused by fluctuating charges in capacitively coupled gates and calculate the corresponding Majorana lifetimes due to thermal noise, which are shown to be much shorter than those in NWs with uniform chemical potential.Comment: 9 pages, 8 figure

    Conductance fluctuations in diffusive rings: Berry phase effects and criteria for adiabaticity

    Full text link
    We study Berry phase effects on conductance properties of diffusive mesoscopic conductors, which are caused by an electron spin moving through an orientationally inhomogeneous magnetic field. Extending previous work, we start with an exact, i.e. not assuming adiabaticity, calculation of the universal conductance fluctuations in a diffusive ring within the weak localization regime, based on a differential equation which we derive for the diffuson in the presence of Zeeman coupling to a magnetic field texture. We calculate the field strength required for adiabaticity and show that this strength is reduced by the diffusive motion. We demonstrate that not only the phases but also the amplitudes of the h/2e Aharonov-Bohm oscillations are strongly affected by the Berry phase. In particular, we show that these amplitudes are completely suppressed at certain magic tilt angles of the external fields, and thereby provide a useful criterion for experimental searches. We also discuss Berry phase-like effects resulting from spin-orbit interaction in diffusive conductors and derive exact formulas for both magnetoconductance and conductance fluctuations. We discuss the power spectra of the magnetoconductance and the conductance fluctuations for inhomogeneous magnetic fields and for spin-orbit interaction.Comment: 18 pages, 13 figures; minor revisions. To appear in Phys. Rev.

    Quantum charge pumping through fractional Fermions in charge density modulated quantum wires and Rashba nanowires

    Full text link
    We study the phenomenon of adiabatic quantum charge pumping in systems supporting fractionally charged fermionic bound states, in two different setups. The first quantum pump setup consists of a charge-density-modulated quantum wire, and the second one is based on a semiconducting nanowire with Rashba spin-orbit interaction, in the presence of a spatially oscillating magnetic field. In both these quantum pumps transport is investigated in a N-X-N geometry, with the system of interest (X) connected to two normal-metal leads (N), and the two pumping parameters are the strengths of the effective wire-lead barriers. Pumped charge is calculated within the scattering matrix formalism. We show that quantum pumping in both setups provides a unique signature of the presence of the fractional-fermion bound states, in terms of asymptotically quantized pumped charge. Furthermore, we investigate shot noise arising due to quantum pumping, verifying that quantized pumped charge corresponds to minimal shot noise.Comment: This is the published versio

    Wheat experimental results

    Get PDF
    The development of wheat relative to frost susceptibility, 87NA10. Optimum flowering times of wheat, 87NA11 and 87WH8. Grain growth and development of a historical set of wheats

    Factors affecting frost damage to wheat in Western Australia

    Get PDF
    It may at first seem strange that precious research funds are being channelled into a project concerned with frost damage in a country where high temperatures and moisture stress limit the growth of plants for a large portion of the year. But cereal crops are only grown in the temperate zones of the continent during winter and spring when they may be exposed to low diurnal temperatures. In many areas cold damage is irregular and rare,however it limits yields not only by causing actual damage but also by restricting the most effective period for flowering. For muck of the Australian wheat crop excessive risk of frost damage sets the earliest date for flowering and the beginning of grain filling at a time when other conditions are at their most favourable for carbohydrate assimilation. The latest date for flowering is determined by high temperatures and low water availability towards the end of the grain filling phase. An optimum flowering time and maximised yield in the long term are achieved when a compromise between the effects of frost and drought is reached

    Quantum Computation and Spin Electronics

    Full text link
    In this chapter we explore the connection between mesoscopic physics and quantum computing. After giving a bibliography providing a general introduction to the subject of quantum information processing, we review the various approaches that are being considered for the experimental implementation of quantum computing and quantum communication in atomic physics, quantum optics, nuclear magnetic resonance, superconductivity, and, especially, normal-electron solid state physics. We discuss five criteria for the realization of a quantum computer and consider the implications that these criteria have for quantum computation using the spin states of single-electron quantum dots. Finally, we consider the transport of quantum information via the motion of individual electrons in mesoscopic structures; specific transport and noise measurements in coupled quantum dot geometries for detecting and characterizing electron-state entanglement are analyzed.Comment: 28 pages RevTeX, 4 figures. To be published in "Quantum Mesoscopic Phenomena and Mesoscopic Devices in Microelectronics," eds. I. O. Kulik and R. Ellialtioglu (NATO Advanced Study Institute, Turkey, June 13-25, 1999

    Degeneracy lifting of Majorana bound states due to electron-phonon interactions

    Full text link
    We study theoretically how electron-phonon interaction affects the energies and level broadening (inverse lifetime) of Majorana bound states (MBSs) in a clean topological nanowire at low temperatures. At zero temperature, the energy splitting between the right and left MBSs remains exponentially small with increasing nanowire length LL. At finite temperatures, however, the absorption of thermal phonons leads to the broadening of energy levels of the MBSs that does not decay with system length, and the coherent absorption/emission of phonons at opposite ends of the nanowire results in MBSs energy splitting that decays only as an inverse power-law in LL. Both effects remain exponential in temperature. In the case of quantized transverse motion of phonons, the presence of Van Hove singularities in the phonon density of states causes additional resonant enhancement of both the energy splitting and the level broadening of the MBSs. This is the most favorable case to observe the phonon-induced energy splitting of MBSs as it becomes much larger than the broadening even if the topological nanowire is much longer than the coherence length. We also calculate the charge and spin associated with the energy splitting of the MBSs induced by phonons. We consider both a spinless low-energy continuum model, which we evaluate analytically, as well as a spinful lattice model for a Rashba nanowire, which we evaluate numerically

    Lower bound for electron spin entanglement from beamsplitter current correlations

    Full text link
    We determine a lower bound for the entanglement of pairs of electron spins injected into a mesoscopic conductor. The bound can be expressed in terms of experimentally accessible quantities, the zero-frequency current correlators (shot noise power or cross-correlators) after transmission through an electronic beam splitter. The effect of spin relaxation (T_1 processes) and decoherence (T_2 processes) during the ballistic coherent transmission of the carriers in the wires is taken into account within Bloch theory. The presence of a variable inhomogeneous magnetic field allows the determination of a useful lower bound for the entanglement of arbitrary entangled states. The decrease in entanglement due to thermally mixed states is studied. Both the entanglement of the output of a source (entangler) and the relaxation (T_1) and decoherence (T_2) times can be determined.Comment: 4 pages, 3 figure
    • …
    corecore