1,287 research outputs found
Quantum Computers, Factoring, and Decoherence
In a quantum computer any superposition of inputs evolves unitarily into the
corresponding superposition of outputs. It has been recently demonstrated that
such computers can dramatically speed up the task of finding factors of large
numbers -- a problem of great practical significance because of its
cryptographic applications. Instead of the nearly exponential (, for a number with digits) time required by the fastest classical
algorithm, the quantum algorithm gives factors in a time polynomial in
(). This enormous speed-up is possible in principle because quantum
computation can simultaneously follow all of the paths corresponding to the
distinct classical inputs, obtaining the solution as a result of coherent
quantum interference between the alternatives. Hence, a quantum computer is
sophisticated interference device, and it is essential for its quantum state to
remain coherent in the course of the operation. In this report we investigate
the effect of decoherence on the quantum factorization algorithm and establish
an upper bound on a ``quantum factorizable'' based on the decoherence
suffered per operational step.Comment: 7 pages,LaTex + 2 postcript figures in a uuencoded fil
Resilient Quantum Computation: Error Models and Thresholds
Recent research has demonstrated that quantum computers can solve certain
types of problems substantially faster than the known classical algorithms.
These problems include factoring integers and certain physics simulations.
Practical quantum computation requires overcoming the problems of environmental
noise and operational errors, problems which appear to be much more severe than
in classical computation due to the inherent fragility of quantum
superpositions involving many degrees of freedom. Here we show that arbitrarily
accurate quantum computations are possible provided that the error per
operation is below a threshold value. The result is obtained by combining
quantum error-correction, fault tolerant state recovery, fault tolerant
encoding of operations and concatenation. It holds under physically realistic
assumptions on the errors.Comment: 19 pages in RevTex, many figures, the paper is also avalaible at
http://qso.lanl.gov/qc
Alien Registration- Laflamme, Marie P. (Lewiston, Androscoggin County)
https://digitalmaine.com/alien_docs/28638/thumbnail.jp
Synthetic Helical Liquids with Ultracold Atoms in Optical Lattices
We discuss a platform for the synthetic realization of key physical
properties of helical Tomonaga Luttinger liquids (HTLLs) with ultracold
fermionic atoms in one-dimensional optical lattices. The HTLL is a strongly
correlated metallic state where spin polarization and propagation direction of
the itinerant particles are locked to each other. We propose an unconventional
one-dimensional Fermi-Hubbard model which, at quarter filling, resembles the
HTLL in the long wavelength limit, as we demonstrate with a combination of
analytical (bosonization) and numerical (density matrix renormalization group)
methods. An experimentally feasible scheme is provided for the realization of
this model with ultracold fermionic atoms in optical lattices. Finally, we
discuss how the robustness of the HTLL against back-scattering and
imperfections, well known from its realization at the edge of two-dimensional
topological insulators, is reflected in the synthetic one-dimensional scenario
proposed here
Exponential speed-up with a single bit of quantum information: Testing the quantum butterfly effect
We present an efficient quantum algorithm to measure the average fidelity
decay of a quantum map under perturbation using a single bit of quantum
information. Our algorithm scales only as the complexity of the map under
investigation, so for those maps admitting an efficient gate decomposition, it
provides an exponential speed up over known classical procedures. Fidelity
decay is important in the study of complex dynamical systems, where it is
conjectured to be a signature of quantum chaos. Our result also illustrates the
role of chaos in the process of decoherence.Comment: 4 pages, 2 eps figure
Experimental implementation of encoded logical qubit operations in a perfect quantum error correcting code
Large-scale universal quantum computing requires the implementation of
quantum error correction (QEC). While the implementation of QEC has already
been demonstrated for quantum memories, reliable quantum computing requires
also the application of nontrivial logical gate operations to the encoded
qubits. Here, we present examples of such operations by implementing, in
addition to the identity operation, the NOT and the Hadamard gate to a logical
qubit encoded in a five qubit system that allows correction of arbitrary single
qubit errors. We perform quantum process tomography of the encoded gate
operations, demonstrate the successful correction of all possible single qubit
errors and measure the fidelity of the encoded logical gate operations
Religiously unaffiliated youth in Europe: shifting remnants of belief and practice in contexts of diffused religion and cohort decline
This study investigates the remnants and dynamics of religious beliefs and practices among religiously unaffiliated youth in Europe, comparing them with the older unaffiliated as well as with the religiously affiliated. Using EVS 2017–2021 data to test contrasting hypotheses of diffused religion and cohort replacement, the study draws three main conclusions. First, youth believe more on average and older age groups believe less when it comes to eschatological beliefs among both the unaffiliated and the affiliated. Second, youth practice less and older age groups practice more on average among both the unaffiliated and the affiliated. Third, the gaps in levels of religious beliefs and practices remain between the religiously unaffiliated and the religiously affiliated among younger populations, but this gap is now narrower for religious practices. Results confirm both hypotheses (diffused religion and cohort replacement) depending on the dimensions of religiosity at study.info:eu-repo/semantics/publishedVersio
- …