54,239 research outputs found

    Comment on "Off-diagonal Long-range Order in Bose Liquids: Irrotational Flow and Quantization of Circulation"

    Full text link
    In the context of an application to superfluidity, it is elaborated how to do quantum mechanics of a system with a rotational velocity. Especially, in both the laboratory frame and the non-inertial co-rotating frame, the canonical momentum, which corresponds to the quantum mechanical momentum operator, contains a part due to the rotational velocity.Comment: 2 page, comment on cond-mat/010435

    The Vector and Axial-Vector Charmonium-like States

    Full text link
    After constructing all the tetraquark interpolating currents with JPC=1−+,1−−,1++J^{PC}=1^{-+}, 1^{--}, 1^{++} and 1+−1^{+-} in a systematic way, we investigate the two-point correlation functions to extract the masses of the charmonium-like states with QCD sum rule. For the 1−−1^{--} qcqˉcˉqc\bar q\bar c charmonium-like state, mX=4.6∼4.7m_X=4.6\sim4.7 GeV, which implies a possible tetraquark interpretation for the state Y(4660). The masses for both the 1++1^{++} qcqˉcˉqc\bar q\bar c and scsˉcˉsc\bar s\bar c charmonium-like states are around 4.0∼4.24.0\sim 4.2 GeV, which are slightly above the mass of X(3872). For the 1−+1^{-+} qcqˉcˉqc\bar q\bar c charmonium-like state, the extracted mass is 4.5∼4.74.5\sim 4.7 GeV. We also discuss the possible decay modes and experimental search of the 1−+1^{-+} charmonium-like states.Comment: 18 pages, 6 figures and 6 table

    Non-LTE analysis of copper abundances for the two distinct halo populations in the solar neighborhood

    Full text link
    Two distinct halo populations were found in the solar neighborhood by a series of works. They can be clearly separated by [alpha\Fe] and several other elemental abundance ratios including [Cu/Fe]. Very recently, a non-local thermodynamic equilibrium (non-LTE) study revealed that relatively large departures exist between LTE and non-LTE results in copper abundance analysis. We aim to derive the copper abundances for the stars from the sample of Nissen et al (2010) with both LTE and non-LTE calculations. Based on our results, we study the non-LTE effects of copper and investigate whether the high-alpha population can still be distinguished from the low-alpha population in the non-LTE [Cu/Fe] results. Our differential abundance ratios are derived from the high-resolution spectra collected from VLT/UVES and NOT/FIES spectrographs. Applying the MAFAGS opacity sampling atmospheric models and spectrum synthesis method, we derive the non-LTE copper abundances based on the new atomic model with current atomic data obtained from both laboratory and theoretical calculations. The copper abundances determined from non-LTE calculations are increased by 0.01 to 0.2 dex depending on the stellar parameters compared with the LTE results. The non-LTE [Cu/Fe] trend is much flatter than the LTE one in the metallicity range -1.6<[Fe/H]<-0.8. Taking non-LTE effects into consideration, the high- and low-alpha stars still show distinguishable copper abundances, which appear even more clear in a diagram of non-LTE [Cu/Fe] versus [Fe/H]. The non-LTE effects are strong for copper, especially in metal-poor stars. Our results confirmed that there are two distinct halo populations in the solar neighborhood. The dichotomy in copper abundance is a peculiar feature of each population, suggesting that they formed in different environments and evolved obeying diverse scenarios.Comment: 9 pages, 7 figures, 2 table
    • …
    corecore