5,218 research outputs found

    CMB Likelihood Functions for Beginners and Experts

    Full text link
    Although the broad outlines of the appropriate pipeline for cosmological likelihood analysis with CMB data has been known for several years, only recently have we had to contend with the full, large-scale, computationally challenging problem involving both highly-correlated noise and extremely large datasets (N>1000N > 1000). In this talk we concentrate on the beginning and end of this process. First, we discuss estimating the noise covariance from the data itself in a rigorous and unbiased way; this is essentially an iterated minimum-variance mapmaking approach. We also discuss the unbiased determination of cosmological parameters from estimates of the power spectrum or experimental bandpowers.Comment: Long-delayed submission. In AIP Conference Proceedings "3K Cosmology" held in Rome, Oct 5-10, 1998, edited by Luciano Maiani, Francesco Melchiorri and Nicola Vittorio, 343-347, New York, American Institute of Physics 199

    Theory of exciton fine structure in semiconductor quantum dots: quantum dot anisotropy and lateral electric field

    Full text link
    Theory of exciton fine structure in semiconductor quantum dots and its dependence on quantum dot anisotropy and external lateral electric field is presented. The effective exciton Hamiltonian including long range electron-hole exchange interaction is derived within the k*p effective mass approximation (EMA). The exchange matrix elements of the Hamiltonian are expressed explicitly in terms of electron and hole envelope functions. The matrix element responsible for the "bright" exciton splitting is identified and analyzed. An excitonic fine structure for a model quantum dot with quasi- two-dimensional anisotropic harmonic oscillator (2DLAHO) confining potential is analyzed as a function of the shape anisotropy, size and applied lateral electric field

    COMPASS: a 2.6m telescope for CMBR polarization studies

    Get PDF
    COMPASS (COsmic Microwave Polarization at Small Scale) is an experiment devoted to measuring the polarization of the CMBR. Its design and characteristics are presented

    A limit on the detectability of the energy scale of inflation

    Get PDF
    We show that the polarization of the cosmic microwave background can be used to detect gravity waves from inflation if the energy scale of inflation is above 3.2 times 10^15 GeV. These gravity waves generate polarization patterns with a curl, whereas (to first order in perturbation theory) density perturbations do not. The limiting ``noise'' arises from the second--order generation of curl from density perturbations, or rather residuals from its subtraction. We calculate optimal sky coverage and detectability limits as a function of detector sensitivity and observing time.Comment: 4 pages, 3 figures, submitted to PR

    Design of a flight qualified long-life cryocooler

    Get PDF
    A second generation Stirling cycle cryogenic refrigerator with a linear drive, magnetic bearings, and clearance seals; designed to produce 5 watts of cooling at 65 Kelvin and to meet Space Shuttle mission requirements is described. The first generation refrigerator met all performance specifications, and operated with no failure for over 12,030 hours. Meeting launch requirements necessitated improvements in the electromagnetic bearings, the radial position sensors, and in the structural design of the moving elements. Organic contamination was eliminated by the use of all metal and ceramic construction. Reductions in system input power are attained by an integral magnetic spring/motor for the displacer and by more efficient linear motors and drive electronics

    Cosmic Microwave Background Anisotropy Window Functions Revisited

    Get PDF
    The primary results of most observations of cosmic microwave background (CMB) anisotropy are estimates of the angular power spectrum averaged through some broad band, called band-powers. These estimates are in turn what are used to produce constraints on cosmological parameters due to all CMB observations. Essential to this estimation of cosmological parameters is the calculation of the expected band-power for a given experiment, given a theoretical power spectrum. Here we derive the "band power" window function which should be used for this calculation, and point out that it is not equivalent to the window function used to calculate the variance. This important distinction has been absent from much of the literature: the variance window function is often used as the band-power window function. We discuss the validity of this assumed equivalence, the role of window functions for experiments that constrain the power in {\it multiple} bands, and summarize a prescription for reporting experimental results. The analysis methods detailed here are applied in a companion paper to three years of data from the Medium Scale Anisotropy Measurement.Comment: 5 pages, 1 included .eps figure, PRD in press---final published versio

    A Method for Individual Source Brightness Estimation in Single- and Multi-band Data

    Full text link
    We present a method of reliably extracting the flux of individual sources from sky maps in the presence of noise and a source population in which number counts are a steeply falling function of flux. The method is an extension of a standard Bayesian procedure in the millimeter/submillimeter literature. As in the standard method, the prior applied to source flux measurements is derived from an estimate of the source counts as a function of flux, dN/dS. The key feature of the new method is that it enables reliable extraction of properties of individual sources, which previous methods in the literature do not. We first present the method for extracting individual source fluxes from data in a single observing band, then we extend the method to multiple bands, including prior information about the spectral behavior of the source population(s). The multi-band estimation technique is particularly relevant for classifying individual sources into populations according to their spectral behavior. We find that proper treatment of the correlated prior information between observing bands is key to avoiding significant biases in estimations of multi-band fluxes and spectral behavior, biases which lead to significant numbers of misclassified sources. We test the single- and multi-band versions of the method using simulated observations with observing parameters similar to that of the South Pole Telescope data used in Vieira, et al. (2010).Comment: 11 emulateapj pages, 3 figures, revised to match published versio
    • ā€¦
    corecore