31 research outputs found

    Biodegradable fuctional polymers – extending frontiers of biomaterials

    No full text
    Acetyloacetoniany cyrkonu (IV), żelaza (III), cynku (II), lantanu (III), i itru (III)) oraz tris(2,2,6,6--tetrametylo-3,5-heptanodionianu) skandu zostały z powodzeniem zastosowane w polimeryzacji modelowych 5-metylo-2-okso-1,3-dioksano-5-karboksylanu etylu (MTC-Et) i 5-metylo-2-okso-1,3-dioksano-5--karboksylanu benzylu (MTC-Bz) oraz α-bromo-ε-kaprolaktonu. Proces polimeryzacji prowadzono w masie w podwyższonej temperaturze. Zależność konwersji monomerów węglanowych od czasu polimeryzacji była monitorowana przy pomocy techniki 1H NMR, a wysokocząsteczkowy produkt scharakteryzowano techniką SEC. Kinetyka prowadzonej reakcji zależała nie tylko od temperatury, ale również od rodzaju zastosowanego inicjatora. Zbadano również wpływ temperatury prowadzonej polimeryzacji na masy cząsteczkowe otrzymanych produktów. Badania te wykazały, że zależność temperatura polimeryzacji – masa molowa produktu jest skomplikowana i dla procesów istnieje temperatura optymalna. Co istotne, w szczególnych przypadkach otrzymywane poliwęglany charakteryzowały się frakcją o wysokiej masie przekraczającej nawet 1 Mg/mol. Szczegółowe wyniki przeprowadzonych badań ujawniły także relatywnie silną reakcję transestryfikacji towarzyszącą polimeryzacji z otwarciem pierścienia MTC-Et. W przypadku polimeryzacji MTC-Bz, którego podstawnik benzylowy powinien stanowić większą zawadę przestrzenną przy wiązaniu estrowym niż podstawnik etylowy MTC-Et i w ten sposób ograniczać transestryfikację, występowanie reakcji transacylowania wydaje się być jeszcze silniejsze. W przypadku α-bromo-ε-kaprolaktonu polimeryzacja z otwarciem pierścienia przebiegała najefektywniej, gdy była inicjowana acetyloacetonianem cyrkonu (IV) i tris(2,2,6,6-tetrametylo-3,5--heptanodionianem) skandu (III), pozwalając na otrzymanie polimeru funkcyjnego. Acetyloacetonian cynku (II) reagował z bromopochodną w sposób, który nie prowadził do otrzymania polimerów.A series of metal acetylacetonates (zirconium (IV), iron (III), zinc (II), lanthanum (III) and yttrium (III)) as well as scandium (III) tris(2,2,6,6-tetramethyl-3,5--heptanedionate) were successfully applied in bulk polymerizations of model ethyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (MTC-Et) and benzyl 5-methyl-2--oxo-1,3-dioxane-5-carboxylate (MTC-Bz) as well as α-bromo-ε-caprolactone. The polymerization experiments were carried out at elevated temperatures. Rate of the carbonate monomers conversion during polymerization experiments was followed by 1H NMR while macromolecular product was also characterized with SEC technique. Rate of the monomers conversion was temperature-dependant but it relied also on type of applied polymerization initiator. The study revealed also strong dependence of the products molar masses on temperature regime. It was found that the reactions have some optimum temperature. Noticingly, several experimental conditions were found to yield polycarbonates containing fractions of high molar mass material of about 1 Mg/mol. Complementary results revealed occurrence of relatively strong transesterification in ring-opening polymerization of MTC-Et. Significantly bulkier benzyl substituent of MTC-Bz, in comparison with ethyl substituent of MTC-Et which was supposed to hinder sterically reactivity of the ester linkage, did not retard transesterification occurring during polymerization. Contrary, transacylation seemed to be even more pronounced in the case of MTC-Bz polymerization. In the case of α-bromo-ε-caprolactone ROP zirconium (IV) acetylacetonate and scandium(III) tris(2,2,6,6-tetramethyl-3,5-heptanedionate) were found to be the most effective and allowed to obtain functional polymer. Zinc (II) acetylacetonate reacted with the brominated lactone without polymer formation

    New functional aliphatic polycarbonates – materials for advanced biomedical applications

    No full text
    The aim of this study is to develop a new method of synthesis of functional (co)polycarbonates by ring -opening polymerization of ethyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (MTC-Et), benzyl 5-methyl-2-oxo-1,3-dioxane-5-carboxylate (MTC-Bz) and their copolymerization with 1,3-trimethylene carbonate (TMC) with potential application in the formation of bioresorbable scaffolds for living cells and drug delivery, systems for achieving controlled drug release. (Co)polymerizations were conducted in bulk, in the presence of low toxic lanthanum acetylacetonate - La(acac)3xH2O as catalyst. All synthesized materials were obtained at 120°C. The results are very promising. A series of (co) polymers were obtained with high conversion and relatively high molecular weights. The composition of the comonomers and their sequence lengths were determined by means 1H NMR and 13C NMR measurements. Higher reactivity during the investigated copolymerizations presented carbonates with pending ethyl or benzyl group than 1,3-trimethylene carbonate. The thermal properties obtained (co)polymers were characterized by differential scanning calorimetry

    NUOVO MECCANISMO DI DEGRADAZIONE TERMICA DI POLI(3-IDROSSIBUTIRRATO) INDOTTA DA GRUPPI CARBOSSILATI

    No full text
    A new E1cB mechanism for the thermal degradation of PHB, induced by carboxylate groups has been proposed. The mechanism is considered to be the main PHB degradation pathway operating at moderate temperatures. The results of this work show that thermal stability of PHBs, as well as of their blends, can be controlled by chemical structure and concentration of the carboxylate polymer end group

    Polyhydroxyalkanoates – applications and recycling

    No full text
    Problem wszechobecnych odpadów z niebiodegradowalnych tworzyw polimerowych generuje konieczność poszukiwania materiałów alternatywnych, utylizowanych po użyciu na drodze biodegradacji w wyniku kompostowania. Takimi tworzywami są biotworzywa zawierające polihydroksyalkaniany – biodegradowalne biopoliestry – otrzymywane metodą fermentacji substratów pochodzących ze źródeł odnawialnych. Mogą one stanowić cenny surowiec do wytwarzania substancji pochodzenia naturalnego lub oligomerycznych produktów o zróżnicowanej strukturze łańcucha i różnych grupach końcowych, przydatnych np. jako nośniki leków.The rising amount of plastic waste derived from non-biodegradable polymeric materials generate the need to find alternative materials which could be biodegraded via composting. One of possible solutions are polyhydroxyalkanoates, biodegradable polyesters obtained by fermentation from renewable resources. They can also serve as valuable raw material for the production of bio-based chemicals as well as oligomeric products with different chain structure and end groups applicable as drug carriers

    Polyhydroxyalkanoates – applications and recycling

    No full text
    Problem wszechobecnych odpadów z niebiodegradowalnych tworzyw polimerowych generuje konieczność poszukiwania materiałów alternatywnych, utylizowanych po użyciu na drodze biodegradacji w wyniku kompostowania. Takimi tworzywami są biotworzywa zawierające polihydroksyalkaniany – biodegradowalne biopoliestry – otrzymywane metodą fermentacji substratów pochodzących ze źródeł odnawialnych. Mogą one stanowić cenny surowiec do wytwarzania substancji pochodzenia naturalnego lub oligomerycznych produktów o zróżnicowanej strukturze łańcucha i różnych grupach końcowych, przydatnych np. jako nośniki leków.The rising amount of plastic waste derived from non-biodegradable polymeric materials generate the need to find alternative materials which could be biodegraded via composting. One of possible solutions are polyhydroxyalkanoates, biodegradable polyesters obtained by fermentation from renewable resources. They can also serve as valuable raw material for the production of bio-based chemicals as well as oligomeric products with different chain structure and end groups applicable as drug carriers

    New generation of the polymeric packaging materials susceptible to organic recycling

    No full text
    Spośród biodegradowalnych poliestrów, alifatyczne biopoliestry (polihydroksyalkaniany, PHA), to materiał polimerowy pochodzenia naturalnego o szerokim spektrum zastosowań. Polihydroksyalkaniany są typowymi termoplastami, wkraczającymi do naszej codzienności jako jednorazowe materiały opakowaniowe, ale równie silnie lokującymi się w obszarze materiałów stosowanych do celów biomedycznych. Materiały te pochodzą z odnawialnych (niepetrochemicznych) źródeł, a po zakończonym okresie życia ulegają recyklingowi organicznemu. Alternatywnie do kompostowania, poli(3-hydroksyalkaniany) mogą również zostać poddane recyklingowi do cennych surowców, relatywnie prostymi metodami. Niniejszy artykuł, w kontekście przeprowadzonych ostatnio kompleksowych badań nad materiałami opakowaniowymi nowej generacji z tworzyw polimerowych ulegających recyklingowi organicznemu, przedstawia możliwości wykorzystania w tym zakresie PHA i ich syntetycznych analogów.Among biodegradable polyesters, aliphatic biopolyesters (polyhydroxyalkanoates, PHAs) are polymer materials of natural origin with broad scope of application. PHAs are typical thermoplasts, which conquer our everyday life as disposable packaging materials, but which also have strong position among materials used for medical applications. These materials are of renewable (non fossil) source, and after finished lifetime they undergo organic recycling. Alternatively to composting, poly(3-hydroxyalkanoates) can also be recycled to valuable resources using relatively simple methods. This article, in a perspective of recently carried out comprehensive research of new generation packaging materials made of organically recyclable polymers, presents possibilities of application of PHA and their synthetic analogs in that scope

    PROCESS FOR CONTROLLED DEGRADATION OF POLYHYDROXYALKANOATES AND PRODUCTS OBTAINABLE THEREFROM

    No full text
    The present invention relates to a process for producing polyhydroxyalkanoate oligomers and/or polymers of reduced molecular weight, which comprises reacting at least one polyhydroxyalkanoate (PHA) with at least one carbonate salt at a temperature of from 50 DEG C to 300 DEG C, preferably from 120 DEG C to 200 DEG C. The above reaction allows a controlled degradation of the PHA chains which yields oligomers and/or polymers having a controlled molecular weight, which can be modulated in view of the specific application for which the oligomers and/or polymers are intended. Moreover, during the reaction carbon dioxide evolves which produces a foamed material which can be easily processed on an industrial scale.; Additionally, the above oligomers and/or polymers, having an end-group bearing a double bond C=C, particularly a crotonate end-group for PHB, can be subjected to subsequent modifications to obtain a wide variety of functional end-groups, for instance carboxyl, carboxylate, hydroxyl, dihydroxyl, oxirane ring, halogen atom. Moreover, the low molecular weight PHAs may be used in the area of controlled delivery systems in agro-chemistry, in the cosmetic industry, in medicine in the form of nano- or microspheres, in household products and in coating systems
    corecore