150 research outputs found

    Disproportionation Transition at Critical Interaction Strength: Na1/2_{1/2}CoO2_2

    Full text link
    Charge disproportionation (CD) and spin differentiation in Na1/2_{1/2}CoO2_2 are studied using the correlated band theory approach. The simultaneous CD and gap opening seen previously is followed through a first order charge disproportionation transition 2Co3.5+^{3.5+} \to Co3+^{3+}+Co4+^{4+}, whose ionic identities are connected more closely to spin (S=0, S=1/2 respectively) than to real charge. Disproportionation in the Co aga_g orbital is compensated by opposing charge rearrangement in other 3d orbitals. At the transition large and opposing discontinuities in the (all-electron) kinetic and potential energies are slightly more than balanced by a gain in correlation energy. The CD state is compared to characteristics of the observed charge-ordered insulating phase in Na1/2_{1/2}CoO2_2, suggesting the Coulomb repulsion value UU is concentration-dependent, with U(x=1/2)U(x=1/2)\simeq3.5 eV.Comment: 4 pages and 4 embedded figure

    Disproportionation and Metallization at Low-Spin to High-Spin Transition in Multiorbital Mott Systems

    Full text link
    We study the thermally driven spin state transition in a two-orbital Hubbard model with crystal field splitting, which provides a minimal description of the physics of LaCoO3. We employ the dynamical mean-field theory with quantum Monte-Carlo impurity solver. At intermediate temperatures we find a spin disproportionated phase characterized by checkerboard order of sites with small and large spin moments. The high temperature transition from the disproportionated to a homogeneous phase is accompanied by vanishing of the charge gap. With the increasing crystal-field splitting the temperature range of the disproportionated phase shrinks and eventually disappears completely.Comment: 4+ pages, 4 figure

    Correlations in a band insulator

    Full text link
    We study a model of a covalent band insulator with on-site Coulomb repulsion at half-filling using dynamical mean-field theory. Upon increasing the interaction strength the system undergoes a discontinuous transition from a correlated band insulator to a Mott insulator with hysteretic behavior at low temperatures. Increasing the temperature in the band insulator close to the insulator-insulator transition we find a crossover to a Mott insulator at elevated temperatures. Remarkably, correlations decrease the energy gap in the correlated band insulator. The gap renormalization can be traced to the low-frequency behavior of the self-energy, analogously to the quasiparticle renormalization in a Fermi liquid. While the uncorrelated band insulator is characterized by a single gap for both charge and spin excitations, the spin gap is smaller than the charge gap in the correlated system.Comment: 7 pages, 7 figure

    Magnetic groundstate and Fermi surface of bcc Eu

    Full text link
    Using spin-spiral technique within the full potential linearized augmented-plane-waves (LAPW) electronic structure method we investigate the magnon spectrum and N\'eel temperature of bcc Eu. Ground state corresponding to an incommensurate spin-spiral is obtained in agreement with experiment and previous calculations. We demonstrate that the magnetic coupling is primarily through the intra-atomic fsf-s and fdf-d exchange and Ruderman-Kittel-Kasuya-Yosida mechanism. We show that the existence of this spin-spiral is closely connected to a nesting feature of the Fermi surface which was not noticed before.Comment: 6 pages 8 figure

    Magnetism in systems with various dimensionality: A comparison between Fe and Co

    Full text link
    A systematic ab initio study is performed for the spin and orbital moments and for the validity of the sum rules for x-ray magnetic circular dichroism for Fe systems with various dimensionality (bulk, Pt-supported monolayers and monatomic wires, free-standing monolayers and monatomic wires). Qualitatively, the results are similar to those for the respective Co systems, with the main difference that for the monatomic Fe wires the term in the spin sum rule is much larger than for the Co wires. The spin and orbital moments induced in the Pt substrate are also discussed.Comment: 4 page

    Spin state transition and covalent bonding in LaCoO3

    Full text link
    We use the dynamical mean-field theory to study a p-d Hubbard Hamiltonian for LaCoO3 derived from ab initio calculations in local density approximation (LDA+DMFT scheme). We address the origin of local moments observed above 100 K and discuss their attribution to a particular atomic multiplet in the presence of covalent Co-O bonding. We show that in solids such attribution, based on the single ion picture, is in general not possible. We explain when and how the single ion picture can be generalized to provide a useful approximation in solids. Our results demonstrate that the apparent magnitude of the local moment is not necessarily indicative of the underlying atomic multiplet. We conclude that the local moment behavior in LaCoO3 arises from the high-spin state of Co and explain the precise meaning of this statement

    Spin state of negative charge-transfer material SrCoO3

    Full text link
    We employ the combination of the density functional and the dynamical mean-field theory (LDA+DMFT) to investigate the electronic structure and magnetic properties of SrCoO3, monocrystal of which were prepared recently. Our calculations lead to a ferromagnetic metal in agreement with experiment. We find that, contrary to some suggestions, the local moment in SrCoO3 does not arise from intermediate spin state, but is a result of coherent superposition of many different atomic states. We discuss how attribution of magnetic response to different atomic states in solids with local moments can be quantified.Comment: 5 pages, 5 figure

    Correlation Effects and Structural Dynamics in the β\beta-Pyrochlore Superconductor KOs2_{2}O6_{6}

    Full text link
    Electronic, magnetic, and dynamical properties of the new superconducting β\beta-pyrochlore KOs2_2O6_6 and related RbOs2_2O6_6 and CsOs2_2O6_6 compounds are calculated and compared with experiment and contrasted with structurally related spinel pyrochlores. The calculated susceptibility Stoner enhancement (110%) and thermal mass enhancement λ\lambda = 2.5-3 reflect moderate but perhaps important Coulomb correlations. The K+^{+} ion optic mode is found to be unstable, allowing large excursions of 0.5-0.6 \AA from its ideal site of the K ion along directions. This dynamical mode is much less anharmonic in the isostructural Rb and Cs compounds (with larger cations), perhaps accounting for their progressively lower values of Tc_c. Electron scattering from this very anharmonic mode may be the cause of the anomalous concave-downward resistivity that is seen only in KOs2_2O6_6.Comment: 6 pages, 8 figure
    corecore