5,550 research outputs found

    Hadronic Transition chi(c1)(1P) to eta(c) plus two pions at the Beijing Spectrometer BES and the Cornell CLEO-c

    Full text link
    Hadronic transitions of the chi(cj)(1P) states have not been studied yet. We calculate the rate of the hadronic transition chi(c1)(1P) to eta(c) plus two pions in the framework of QCD multipole expansion. We show that this process can be studied experimentally at the upgraded Beijing Spectrometer BES III and the Cornell CLEO-c.Comment: 6 pages RevTex4(two-column). Version published in Phys. Rev. D 75, 054019 (2007

    Probing Electroweak Symmetry Breaking Mechanism at the LHC: A Guideline from Power Counting Analysis

    Full text link
    We formulate the equivalence theorem as a theoretical criterion for sensitively probing the electroweak symmetry breaking mechanism, and develop a precise power counting method for the chiral Lagrangian formulated electroweak theories. Armed with these, we perform a systematic analysis on the sensitivities of the scattering processes W±W±→W±W±W^\pm W^\pm \rightarrow W^\pm W^\pm and qqˉ′→W±Zq\bar{q}'\rightarrow W^\pm Z for testing all possible effective bosonic operators in the chiral Lagrangian formulated electroweak theories at the CERN Large Hadron Collider (LHC). The analysis shows that these two kinds of processes are "complementary" in probing the electroweak symmetry breaking sector.Comment: Extended version, 11-page-Latex-file and 3 separate PS-Figs. To be Published in Mod.Phys.Lett.

    Sensitivity of the LHC to Electroweak Symmetry Breaking: Equivalence Theorem as a Criterion

    Get PDF
    Based upon our recent study on the intrinsic connection between the longitudinal weak-boson scatterings and probing the electroweak symmetry breaking (EWSB) mechanism, we reveal the profound physical content of the Equivalence Theorem (ET) as being able to discriminate physical processes which are sensitive/insensitive to probing the EWSB sector. With this physical content of the ET as a criterion, we analyze the complete set of the bosonic operators in the electroweak chiral Lagrangian and systematically classify the sensitivities to probing all these operators at the CERN LHC via the weak-boson fusion in W±W±W^\pm W^\pm channel. This is achieved by developing a precise power counting rule (a generalization from Weinberg's counting method) to {\it separately} count the power dependences on the energy EE and all relevant mass scales.Comment: 33 pages, LaTeX, 10 figures and Table-1b are in the separate file figtab.uu. (The only change made from the previous version is to fix the bugs in the uuencoded file.

    Longitudinal/Goldstone boson equivalence and phenomenology of probing the electroweak symmetry breaking

    Get PDF
    We formulate the equivalence between the longitudinal weak-boson and the Goldstone boson as a criterion for sensitively probing the electroweak symmetry breaking mechanism and develop a precise power counting rule for chiral Lagrangian formulated electroweak theories. With these we semi-quatitatively analyze the sensitivities to various effective operators related to electrowaeak symmetry breaking via weak-boson scatterings at the CERN Large Hadron Collider (LHC).Comment: 6 pages, LaTex, 1 postscript figure included using psfig.te

    Identification of the age-period-cohort model and the extended chain ladder model

    Get PDF
    In this paper, we consider the identification problem arising in the age-period-cohort models, as well as in the extended chain ladder model. We propose a canonical parametrization based on the accelerations of the trends in the three factors. This parametrization is exactly identified. It eases interpretation, estimation and forecasting. The canonical parametrization is shown to apply for a class of index sets which have trapezoid shapes, including various Lexis diagrams and the insurance reserving triangles.

    NF-{kappa}B-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses

    Get PDF
    Activation of mammalian innate and acquired immune responses must be tightly regulated by elaborate mechanisms to control their onset and termination. MicroRNAs have been implicated as negative regulators controlling diverse biological processes at the level of posttranscriptional repression. Expression profiling of 200 microRNAs in human monocytes revealed that several of them (miR-146a/b, miR-132, and miR-155) are endotoxin-responsive genes. Analysis of miR-146a and miR-146b gene expression unveiled a pattern of induction in response to a variety of microbial components and proinflammatory cytokines. By means of promoter analysis, miR-146a was found to be a NF-{kappa}B-dependent gene. Importantly, miR-146a/b were predicted to base-pair with sequences in the 3' UTRs of the TNF receptor-associated factor 6 and IL-1 receptor-associated kinase 1 genes, and we found that these UTRs inhibit expression of a linked reporter gene. These genes encode two key adapter molecules downstream of Toll-like and cytokine receptors. Thus, we propose a role for miR-146 in control of Toll-like receptor and cytokine signaling through a negative feedback regulation loop involving down-regulation of IL-1 receptor-associated kinase 1 and TNF receptor-associated factor 6 protein levels

    Crescent Waves in Optical Cavities

    Full text link
    We theoretically and experimentally generate stationary crescent surface solitons pinged to the boundary of a micro-structured vertical cavity surface emission laser by using the intrinsic cavity mode as a background potential. Instead of a direct transition from linear to nonlinear cavity modes, we demonstrate the existence of a symmetry-breaking crescent waves without any analogs in the linear limit. Our results provide an alternative and general method to control lasing characteristics as well as to study optical surface waves.Comment: 3 figure
    • …
    corecore