59 research outputs found

    Hematopoietic chimerism after allogeneic stem cell transplantation: a comparison of quantitative analysis by automated DNA sizing and fluorescent in situ hybridization

    Get PDF
    BACKGROUND: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is performed mainly in patients with high-risk or advanced hematologic malignancies and congenital or acquired aplastic anemias. In the context of the significant risk of graft failure after allo-HSCT from alternative donors and the risk of relapse in recipients transplanted for malignancy, the precise monitoring of posttransplant hematopoietic chimerism is of utmost interest. Useful molecular methods for chimerism quantification after allogeneic transplantation, aimed at distinguishing precisely between donor's and recipient's cells, are PCR-based analyses of polymorphic DNA markers. Such analyses can be performed regardless of donor's and recipient's sex. Additionally, in patients after sex-mismatched allo-HSCT, fluorescent in situ hybridization (FISH) can be applied. METHODS: We compared different techniques for analysis of posttransplant chimerism, namely FISH and PCR-based molecular methods with automated detection of fluorescent products in an ALFExpress DNA Sequencer (Pharmacia) or ABI 310 Genetic Analyzer (PE). We used Spearman correlation test. RESULTS: We have found high correlation between results obtained from the PCR/ALF Express and PCR/ABI 310 Genetic Analyzer. Lower, but still positive correlations were found between results of FISH technique and results obtained using automated DNA sizing technology. CONCLUSIONS: All the methods applied enable a rapid and accurate detection of post-HSCT chimerism

    Epigenetic regulation of inflammation by microRNAs in post-infectious bronchiolitis obliterans

    Get PDF
    Post-infectious bronchiolitis obliterans (PiBO) is a rare, chronic disease initiated by severe infection and followed by perpetuating inflammation and obliteration of the small airways. MicroRNAs (miRNAs) have been proposed to play a central role as epigenetic regulators, which control resolution and prevent the uncontrolled progress of inflammation. The aim of this study was to define biomarkers on the level of post-transcriptional gene regulation in order to characterise PiBO. A total of 39 patients with well-defined PiBO and 31 controls from two centres, Barcelona, Spain, and Frankfurt, Germany, were analysed by next-generation sequencing (NGS). The evaluation of the biological targets of the miRNAs was performed by pathway enrichment analysis and protein-protein interaction network analysis respectively. Patients with PiBO had significantly lower lung function values and increased airway inflammation in induced sputum as indicated by total cell counts, neutrophils, IL-1β, IL-6, IL-8 and TGF-β compared to controls. Next-generation sequencing analysis revealed a total of 22 dysregulated miRNAs, which passed significance threshold for P adj ≤ 0.001 with 17 being upregulated and 5 being downregulated. Of these dysregulated miRNAs, miR-335-5p, miR-186-5p, miR-30b-5p and miR-30c-5p were further validated using qRT-PCR. Interestingly, these miRNAs are functionally implicated in cytokine-cytokine receptor interaction, TGF-β signalling and FoxO signalling pathway and significantly correlated with lung function values (FEV1). Our results demonstrate an aberrant miRNA expression profile in PiBO, which impacts pathways responsible for the regulation of inflammation and fibrosis. The defined miRNAs are useful biomarkers and should be assessed as potential target in the field of miRNA therapeutics. We identified dysregulated miRNAs, which impact pathways for inflammatory cytokines and TGF-β signalling in post-infectious bronchiolitis obliterans. The miRNAs reflect bronchial inflammation and fibrosis and could be considered as novel biomarkers supporting diagnosis and treatment options

    Epigenetic regulation of inflammation by microRNAs in post-infectious bronchiolitis obliterans

    Get PDF
    Post-infectious bronchiolitis obliterans (PiBO) is a rare, chronic disease initiated by severe infection and followed by perpetuating inflammation and obliteration of the small airways. MicroRNAs (miRNAs) have been proposed to play a central role as epigenetic regulators, which control resolution and prevent the uncontrolled progress of inflammation. The aim of this study was to define biomarkers on the level of post-transcriptional gene regulation in order to characterise PiBO. A total of 39 patients with well-defined PiBO and 31 controls from two centres, Barcelona, Spain, and Frankfurt, Germany, were analysed by next-generation sequencing (NGS). The evaluation of the biological targets of the miRNAs was performed by pathway enrichment analysis and protein-protein interaction network analysis respectively. Patients with PiBO had significantly lower lung function values and increased airway inflammation in induced sputum as indicated by total cell counts, neutrophils, IL-1β, IL-6, IL-8 and TGF-β compared to controls. Next-generation sequencing analysis revealed a total of 22 dysregulated miRNAs, which passed significance threshold for P adj ≤ 0.001 with 17 being upregulated and 5 being downregulated. Of these dysregulated miRNAs, miR-335-5p, miR-186-5p, miR-30b-5p and miR-30c-5p were further validated using qRT-PCR. Interestingly, these miRNAs are functionally implicated in cytokine-cytokine receptor interaction, TGF-β signalling and FoxO signalling pathway and significantly correlated with lung function values (FEV1). Our results demonstrate an aberrant miRNA expression profile in PiBO, which impacts pathways responsible for the regulation of inflammation and fibrosis. The defined miRNAs are useful biomarkers and should be assessed as potential target in the field of miRNA therapeutics. We identified dysregulated miRNAs, which impact pathways for inflammatory cytokines and TGF-β signalling in post-infectious bronchiolitis obliterans. The miRNAs reflect bronchial inflammation and fibrosis and could be considered as novel biomarkers supporting diagnosis and treatment options

    Epigenetic regulation of inflammation by microRNAs in post-infectious bronchiolitis obliterans

    Get PDF
    Post-infectious bronchiolitis obliterans (PiBO) is a rare, chronic disease initiated by severe infection and followed by perpetuating inflammation and obliteration of the small airways. MicroRNAs (miRNAs) have been proposed to play a central role as epigenetic regulators, which control resolution and prevent the uncontrolled progress of inflammation. The aim of this study was to define biomarkers on the level of post-transcriptional gene regulation in order to characterise PiBO. A total of 39 patients with well-defined PiBO and 31 controls from two centres, Barcelona, Spain, and Frankfurt, Germany, were analysed by next-generation sequencing (NGS). The evaluation of the biological targets of the miRNAs was performed by pathway enrichment analysis and protein-protein interaction network analysis respectively. Patients with PiBO had significantly lower lung function values and increased airway inflammation in induced sputum as indicated by total cell counts, neutrophils, IL-1β, IL-6, IL-8 and TGF-β compared to controls. Next-generation sequencing analysis revealed a total of 22 dysregulated miRNAs, which passed significance threshold for P adj ≤ 0.001 with 17 being upregulated and 5 being downregulated. Of these dysregulated miRNAs, miR-335-5p, miR-186-5p, miR-30b-5p and miR-30c-5p were further validated using qRT-PCR. Interestingly, these miRNAs are functionally implicated in cytokine-cytokine receptor interaction, TGF-β signalling and FoxO signalling pathway and significantly correlated with lung function values (FEV1). Our results demonstrate an aberrant miRNA expression profile in PiBO, which impacts pathways responsible for the regulation of inflammation and fibrosis. The defined miRNAs are useful biomarkers and should be assessed as potential target in the field of miRNA therapeutics. We identified dysregulated miRNAs, which impact pathways for inflammatory cytokines and TGF-β signalling in post-infectious bronchiolitis obliterans. The miRNAs reflect bronchial inflammation and fibrosis and could be considered as novel biomarkers supporting diagnosis and treatment options

    Epigenetic regulation of inflammation by microRNAs in post-infectious bronchiolitis obliterans

    Get PDF
    Post-infectious bronchiolitis obliterans (PiBO) is a rare, chronic disease initiated by severe infection and followed by perpetuating inflammation and obliteration of the small airways. MicroRNAs (miRNAs) have been proposed to play a central role as epigenetic regulators, which control resolution and prevent the uncontrolled progress of inflammation. The aim of this study was to define biomarkers on the level of post-transcriptional gene regulation in order to characterise PiBO. A total of 39 patients with well-defined PiBO and 31 controls from two centres, Barcelona, Spain, and Frankfurt, Germany, were analysed by next-generation sequencing (NGS). The evaluation of the biological targets of the miRNAs was performed by pathway enrichment analysis and protein-protein interaction network analysis respectively. Patients with PiBO had significantly lower lung function values and increased airway inflammation in induced sputum as indicated by total cell counts, neutrophils, IL-1β, IL-6, IL-8 and TGF-β compared to controls. Next-generation sequencing analysis revealed a total of 22 dysregulated miRNAs, which passed significance threshold for P adj ≤ 0.001 with 17 being upregulated and 5 being downregulated. Of these dysregulated miRNAs, miR-335-5p, miR-186-5p, miR-30b-5p and miR-30c-5p were further validated using qRT-PCR. Interestingly, these miRNAs are functionally implicated in cytokine-cytokine receptor interaction, TGF-β signalling and FoxO signalling pathway and significantly correlated with lung function values (FEV1). Our results demonstrate an aberrant miRNA expression profile in PiBO, which impacts pathways responsible for the regulation of inflammation and fibrosis. The defined miRNAs are useful biomarkers and should be assessed as potential target in the field of miRNA therapeutics. We identified dysregulated miRNAs, which impact pathways for inflammatory cytokines and TGF-β signalling in post-infectious bronchiolitis obliterans. The miRNAs reflect bronchial inflammation and fibrosis and could be considered as novel biomarkers supporting diagnosis and treatment options

    ErbB2 (HER2)-CAR-NK-92 cells for enhanced immunotherapy of metastatic fusion-driven alveolar rhabdomyosarcoma

    Get PDF
    IntroductionMetastatic rhabdomyosarcoma (RMS) is a challenging tumor entity that evades conventional treatments and endogenous antitumor immune responses, highlighting the need for novel therapeutic strategies. Applying chimeric antigen receptor (CAR) technology to natural killer (NK) cells may offer safe, effective, and affordable therapies that enhance cancer immune surveillance. MethodsHere, we assess the efficacy of clinically usable CAR-engineered NK cell line NK-92/5.28.z against ErbB2-positive RMS in vitro and in a metastatic xenograft mouse model.ResultsOur results show that NK-92/5.28.z cells effectively kill RMS cells in vitro and significantly prolong survival and inhibit tumor progression in mice. The persistence of NK-92/5.28.z cells at tumor sites demonstrates efficient antitumor response, which could help overcome current obstacles in the treatment of solid tumors.DiscussionThese findings encourage further development of NK-92/5.28.z cells as off-the-shelf immunotherapy for the treatment of metastatic RMS

    Ein Beitrag zur Kenntnis der Fische der Jangtze und seiner Zufl\ufcsse

    No full text
    Volume: 1908Start Page: 95End Page: 10
    corecore