33 research outputs found

    Complex interplay of evolutionary forces shaping population genomic structure of invasive Aedes albopictus in Southern Europe

    Get PDF
    Abstract Background In the last four decades, the Asian tiger mosquito, Aedes albopictus, vector of several human arboviruses, has spread from its native range in South-East Asia to all over the world, largely through the transportation of its eggs via the international trade in used tires. Albania was the first country invaded in Europe in 1979, followed by Italy in 1990 and other Mediterranean countries after 2000. Methods/Principal findings We here inferred the invasion history and migration patterns of Ae. albopictus in Italy (today the most heavily-infested country in Europe), Greece and Albania, by analyzing a panel of >100,000 single nucleotide polymorphisms (SNPs) obtained by sequencing of double-digest Restriction site-Associated DNA (ddRADseq). The obtained dataset was combined with samples previously analyzed from both the native and invasive range worldwide to interpret the results using a broader spatial and historical context. The emerging evolutionary scenario complements the results of other studies in showing that the extraordinary worldwide expansion of Ae. albopictus has occurred thanks to multiple independent invasions by large numbers of colonists from multiple geographic locations in both native and previously invaded areas, consistently with the role of used tires shipments to move large numbers of eggs worldwide. By analyzing mosquitoes from nine sites across ~1,000-km transect in Italy, we were able to detect a complex interplay of drift, isolation by distance mediated divergence, and gene flow in shaping the species very recent invasion and range expansion, suggesting overall high connectivity, likely due to passive transportation of adults via ground transportation, as well as specific adaptations to local conditions. Conclusions/Significance Results contribute to characterize one of the most successful histories of animal invasion, and could be used as a baseline for future studies to track epidemiologically relevant characters (e.g. insecticide resistance)

    A comparison of the physiological responses of two land snail species with different distributional ranges

    No full text
    Land snails usually exhibit cycles of activity and dormancy (aestivation or hibernation). The transition between these two states is accompanied by a range of behavioural and physiological responses to ensure their survival under adverse environmental conditions. Furthermore, aestivation plays an important role in shaping species distribution patterns. We examined the seasonal patterns in biochemical tissue composition in relation to aspects of behavioural ecology in three land snail populations: one mainland and one insular population of the widespread Helix aspersa and a population (sympatric with the latter) of Helix figulina, a congeneric species with a narrow and declining distribution. Helix figulina aestivates in underground borrows, while H. aspersa spends the summer under stones and may interrupt aestivation when conditions become favourable. Prior to aestivation H. figulina accumulates metabolic fuels, which it consumes later during summer, and at the same time loses substantial body water and increases lactate dehydrogenase (LDH) activity. The insular H. aspersa population follows a similar pattern (regarding metabolites and LDH activity), with the difference that water loss is limited. However, the mainland population of H. aspersa deviates from this model with energy metabolites and water levels showing little variation throughout the year, while LDH activity is reduced. These differences probably reflect the particular behavioural and physiological patterns adopted by each species. The specialist and range-restricted H. figulina shows a constant and more predictable seasonal pattern, which may be effective for surviving in its historical biogeographic range, but it seems to be more vulnerable to possibly changing environmental conditions. On the other hand the generalist and cosmopolitan H. aspersa adopts a more flexible pattern that compensates for the effects of adverse conditions during aestivation and permits a more effective exploitation of energy resources. © 2012 The Author

    Disentangling the effects of intraspecies variability, phylogeny, space, and climate on the evolution of shell morphology in endemic Greek land snails of the genus Codringtonia

    No full text
    Extensive variation in land snail shell morphology has been widely documented, although few studies have attempted to investigate the ecological and evolutionary drivers of this variation. Within a comparative phylogenetic framework, we investigated the temporal and spatial evolution of the shell morphology of the Greek endemic land snail genus Codringtonia. The contribution of both inter- and intraspecies shell differentiation in the overall shell variability is assessed. The effect of climate, space, and evolutionary history on the shell variability was inferred using a variance partitioning framework. For Codringtonia species, intraspecies divergence of shell traits contributes substantially to the overall shell variability. By decomposing this variability, it was shown that the overall shell size of Codringtonia clades is phylogenetically constrained, related to early speciation events, and strongly affected by large-scale spatial variability (latitudinal gradient). The effect of climate on shell size cannot be disentangled from phylogeny and space. Shell and, to a larger extent, aperture shape are not phylogenetically constrained, and appear to be mostly related to conspecific populations divergence events. Shell shape is substantially explained by both climate and space that greatly overlap. Aperture shape is mainly interpreted by medium to small-scale spatial variables. © 2013 The Linnean Society of London

    Two new species of Euscorpius from Euboea Island, Greece (Scorpiones: Euscorpiidae)

    No full text
    We describe two new species of the genus Euscorpius from Euboea Island, Greece: E. bir-ulai sp.n. (Agia Triada Cave) and E. mylonasi sp.n. (Mt. Dirfi). The cave species E. birulai sp.n. is morphologically close to E. koschewnikowi Birula, 1900 from Mt. Athos, Greece. Species-level divergence of E. mylonasi sp.n. is also confirmed by multiple DNA markers. According to DNA data, an undescribed population from the nearby Skyros Island is closely related to E. mylonasi sp.n. © 2014 Arthropoda Selecta

    Disentangling the effects of intraspecies variability, phylogeny, space, and climate on the evolution of shell morphology in endemic Greek land snails of the genus Codringtonia

    No full text
    cited By 2International audienceExtensive variation in land snail shell morphology has been widely documented, although few studies have attempted to investigate the ecological and evolutionary drivers of this variation. Within a comparative phylogenetic framework, we investigated the temporal and spatial evolution of the shell morphology of the Greek endemic land snail genus Codringtonia. The contribution of both inter- and intraspecies shell differentiation in the overall shell variability is assessed. The effect of climate, space, and evolutionary history on the shell variability was inferred using a variance partitioning framework. For Codringtonia species, intraspecies divergence of shell traits contributes substantially to the overall shell variability. By decomposing this variability, it was shown that the overall shell size of Codringtonia clades is phylogenetically constrained, related to early speciation events, and strongly affected by large-scale spatial variability (latitudinal gradient). The effect of climate on shell size cannot be disentangled from phylogeny and space. Shell and, to a larger extent, aperture shape are not phylogenetically constrained, and appear to be mostly related to conspecific populations divergence events. Shell shape is substantially explained by both climate and space that greatly overlap. Aperture shape is mainly interpreted by medium to small-scale spatial variables. © 2013 The Linnean Society of London

    Climatic conditions driving a part of changes in the biochemical composition in land snails: Insights from the endangered Codringtonia(Gastropoda: Pulmonata)

    No full text
    Most land snails in order to ensure their survival under adverse environmental conditions interrupt their activity entering a state of dormancy. The transition from activity to dormancy is accompanied by several changes in the animals' physiology. To identify these changes we examined the seasonal patterns in the biochemical composition and the LDH activity of three different tissues in four endangered land snail species. Additionally, within a phylogenetic framework we investigated the correlation of the measured parameters with the spatial and climatic variables of the sampling sites. Our results indicate that there are both differences and similarities in the pattern exhibited by the four species, depending on the physiological parameter investigated and the climatic conditions of the sampling sites, which sometimes have a significant effect on the seasonal pattern exhibited. Snails can successfully deal with the winter dormancy by maintaining high metabolite concentrations and stable water content whereas there is no indication of anaerobic pathways' activation. At the same time, they deal successfully with the low humidity and high temperatures during the summer, but they are forced to maintain low metabolite concentrations and seem to activate anaerobic pathways to meet their energy demands. Therefore, from a biochemical perspective, it seems that winter is a less stressful period for snails compared to summer. According to the prevailing climate change scenarios, the Mediterranean region is going to exhibit a sudden transition towards a dryer and longer summer. This transition will exert a very high adaptation pressure on the already vulnerable Codringtonia species. Thus, it could be that this endemic Greek genus is truly on the verge of extinction. © 2016 Institute of Zoology, Slovak Academy of Sciences

    Conservation genetics of four critically endangered greek endemic plants: A preliminary assessment

    No full text
    The Mediterranean basin constitutes one of the largest global biodiversity hotspots, hosting more than 11,000 endemic plants, and it is recognised as an area with a high proportion of threatened taxa. Nevertheless, only a tiny fraction of the threatened Mediterranean endemics have their genetic diversity assessed, and we are unaware if and how climate change might impact their conservation status. This is even more pronounced in Eastern Mediterranean countries with a rich endemic flora, such as Greece, which hosts a large portion of the plant taxa assessed at the European level under the IUCN criteria. Using inter simple sequence repeats (ISSR) markers and species distribution models, we analysed the genetic diversity and investigated the impacts of climate change on four critically endangered and extremely narrow and rare Greek island endemic plants, namely Aethionema retsina, Allium iatrouinum, Convolvulus argyrothamnos, and Saponaria jagelii. All four species are facing intense anthropogenic threats and display moderate genetic diversity (uHe: 0.254–0.322), while climate change is expected to have a profound impact on their range size during the coming decades. A combination of in-and ex-situ measures, such as population reinforcement and seed bank conservation, are urgently needed in order to preserve these highly threatened and rare Greek endemics. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    Redescription of Euscorpius tauricus (C.L. Koch, 1837), with the description of two new related species from Greece (Scorpiones: Euscorpiidae)

    No full text
    Euscorpius tauricus (C. L. Koch, 1837) was previously known only from the Crimea Peninsula, Ukraine. We report an unexpected presence of this species in the Cyclades Islands (Greece) and northwestern Anatolia (Turkey). In addition we designate a neotype for this species. We synonymize Euscorpius carpathicus aegaeus Di Caporiacco, 1950 syn. n., from Antiparos Island and Euscorpius rahsenae Yağmur et Tropea, 2013 syn. n., from Anatolia, with E. tauricus. In addition, we describe two new species related to E. tauricus, from the Cyclades Islands: E. curcici sp. n., from Ios and Sikinos Islands, and E. amorgensis sp. n., from Amorgos Island. Identity and level of divergence of these taxa is confirmed by multiple DNA markers. © 2016. All Rights Reserved

    Mitochondrial phylogeny and biogeographic history of the Greek endemic land-snail genus Codringtonia Kobelt 1898 (Gastropoda, Pulmonata, Helicidae)

    No full text
    The aim of this work was to infer the phylogeny of the Greek endemic land-snail genus Codringtonia Kobelt 1898, estimate the time frame of the radiation of the genus, and propose a biogeographic scenario that could explain the contemporary distribution of Codringtonia lineages. The study took place in the districts of Peloponnese, Central Greece and Epirus of mainland Greece. Sequence data originating from three mtDNA genes (COI, COII, and 16S rDNA) were used to infer the phylogeny of the eight nominal Codringtonia species. Furthermore, the radiation time-frame of extant Codringtonia species was estimated using a relaxed molecular clock analysis and mtDNA substitution rates of land snails. The phylogenetic analysis supported the existence of six Codringtonia lineages in Greece and indicated that one nominal species (Codringtonia neocrassa) might belong to a separate genus distantly related to Codringtonia. The time frame of differentiation of Codringtonia species was placed in the Late Miocene-Pleistocene epoch. The dispersal-vicariance analysis performed indicated that most probably Codringtonia exhibited a north-to-south spread with the ancestral area being that of central Greek mainland, accompanied with duplication (speciation) and vicariance events. © 2011 Elsevier Inc

    The transcriptome of a "sleeping" invader: De novo assembly and annotation of the transcriptome of aestivating Cornu aspersum

    No full text
    Background: Cornu aspersum is a quite intriguing species from the point of view of ecology and evolution and its potential use in medical and environmental applications. It is a species of economic importance since it is farmed and used for culinary purposes. However, the genomic tools that would allow a thorough insight into the ecology, evolution, nutritional and medical properties of this highly adaptable organism, are missing. In this work, using next-generation sequencing (NGS) techniques we assessed a significant portion of the transcriptome of this non-model organism. Results: Out of the 9445 de novo assembled contigs, 2886 (30.6%) returned significant hits and for 2261 (24%) of them Gene Ontology (GO) terms associated to the hits were retrieved. A high percentage of the contigs (69.4%) produced no BLASTx hits. The GO terms were grouped to reflect biological processes, molecular functions and cellular components. Certain GO terms were dominant in all groups. After scanning the assembled transcriptome for microsatellites (simple sequence repeats, SSRs), a total of 563 SSRs were recovered. Among the identified SSRs, trinucleotide repeats were the predominant followed by tetranucleotide and dinucleotide repeats. Conclusion: The annotation success of the transcriptome of C. aspersum was relatively low. This is probably due to the very limited number of annotated reference genomes existing for mollusc species, especially terrestrial ones. Several biological processes being active in the aestivating species were revealed through the association of the transcripts to enzymes relating to the pathways. The genomic tools provided herein will eventually aid in the study of the global genomic diversity of the species and the investigation of aspects of the ecology, evolution, behavior, nutritional and medical properties of this highly adaptable organism. © 2017 The Author(s)
    corecore