8 research outputs found

    The clinical spectrum of Caspr2 antibody-associated disease

    No full text
    Objective: To report a large cohort of patients with antibodies against contactin-associated protein-like 2 (Caspr2) and provide the clinical spectrum of this disorder. Methods: Serum and CSF samples were assessed at 2 neuroimmunology centers in Barcelona and Rotterdam. Patients were included if Caspr2 antibodies were confirmed with 2 independent techniques, including brain immunohistochemistry and cell-based assay. Clinical information was obtained by the authors or provided by treating physicians after patients' informed consent. Results: Median age at symptom onset was 66 years. Of 38 patients, 34 were male. Median time to nadir of disease was 4 months (in 30% >1 year). The most frequent syndromes included limbic encephalitis (42%) and Morvan syndrome (29%). Seventy-seven percent of the patients had >= 3 of the following symptoms: encephalopathy (cognitive deficits/seizures), cerebellar dysfunction, peripheral nervous system hyperexcitability, dysautonomia, insomnia, neuropathic pain, or weight loss. A tumor, mostly thymoma, occurred in 19% of the patients. Immunoglobulin G4 subclass antibodies were present in all patients; 63% also had immunoglobulin G1 antibodies. Treatment response occurred in 93% of the patients and 25% had clinical relapses. Conclusions: Caspr2 antibodies associate with a treatable disorder that predominantly affects elderly men. The resulting syndrome may vary among patients but it usually includes a set of well-established symptoms. Recognition of this spectrum of symptoms and consideration of the protracted clinical course are important for early diagnosis of this disorder. Prompt immunotherapy and tumor therapy (if needed) often result in improvement

    A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies

    No full text
    Strippel C, Herrera-Rivero M, Wendorff M, et al. A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies. Brain: A Journal of Neurology . 2022: awac119.Autoimmune neurological syndromes (AINS) with autoantibodies against the 65  kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome, or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1,214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1,047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (p90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (p=4.39*10-4, OR=2.5, 95%CI= 1.499-4.157), and DRB1*04:01 allele (p=8.3*10-5, OR=2.4, 95%CI=1.548-3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of eQTL genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles. © The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain

    A genome-wide association study in autoimmune neurological syndromes with anti-GAD65 autoantibodies

    No full text
    Autoimmune neurological syndromes (AINS) with autoantibodies against the 65kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P 90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4(+) T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 x 10(-4), OR = 2.5, 95%CI = 1.499-4.157) and DRB1*04:01 allele (P = 8.3 x 10(-5), OR = 2.4, 95%CI = 1.548-3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles

    Neuroimmune disorders of the central nervous system in children in the molecular era

    No full text

    Mapping autoantigen epitopes: molecular insights into autoantibody-associated disorders of the nervous system

    No full text
    corecore