142 research outputs found
ON THE LOW-TEMPERATURE ORDERING OF THE 3D ATIFERROMAGNETIC THREE-STATE POTTS MODEL
The antiferromagnetic three-state Potts model on the simple-cubic lattice is
studied using Monte Carlo simulations. The ordering in a medium temperature
range below the critical point is investigated in detail. Two different regimes
have been observed: The so-called broken sublattice-symmetry phase dominates at
sufficiently low temperatures, while the phase just below the critical point is
characterized by an effectively continuous order parameter and by a fully
restored rotational symmetry. However, the later phase is not the
permutationally sublattice symmetric phase recently predicted by the cluster
variation method.Comment: 20 pages with 9 figures in a single postscript file (compressed and
uuencoded by uufiles -gz -9) plus two big figures in postscript file
Slow Forcing in the Projective Dynamics Method
We provide a proof that when there is no forcing the recently introduced
projective dynamics Monte Carlo algorithm gives the exact lifetime of the
metastable state, within statistical uncertainties. We also show numerical
evidence illustrating that for slow forcing the approach to the zero-forcing
limit is rather rapid. The model studied numerically is the 3-dimensional
3-state Potts ferromagnet.Comment: 1 figure, invited submission to CCP'98 conference, submitted to
Computer Physics Communication
A projection method for statics and dynamics of lattice spin systems
A method based on Monte Carlo sampling of the probability flows projected
onto the subspace of one or more slow variables is proposed for investigation
of dynamic and static properties of lattice spin systems. We illustrate the
method by applying it, with projection onto the order-parameter subspace, to
the three-dimensional 3-state Potts model in equilibrium and to metastable
decay in a three-dimensional 3-state kinetic Potts model.Comment: 4 pages, 3 figures, RevTex, final version to appear in Phys. Rev.
Let
Extreme Events in Resonant Radiation from Three-dimensional Light Bullets
We report measurements that show extreme events in the statistics of resonant
radiation emitted from spatiotemporal light bullets. We trace the origin of
these extreme events back to instabilities leading to steep gradients in the
temporal profile of the intense light bullet that occur during the initial
collapse dynamics. Numerical simulations reproduce the extreme valued
statistics of the resonant radiation which are found to be intrinsically linked
to the simultaneous occurrence of both temporal and spatial self-focusing
dynamics. Small fluctuations in both the input energy and in the spatial phase
curvature explain the observed extreme behaviour.Comment: 5 pages, 5 figures, submitte
Microstructure and velocity of field-driven solid-on-solid interfaces moving under stochastic dynamics with local energy barriers
We study the microscopic structure and the stationary propagation velocity of
(1+1)-dimensional solid-on-solid interfaces in an Ising lattice-gas model,
which are driven far from equilibrium by an applied force, such as a magnetic
field or a difference in (electro)chemical potential. We use an analytic
nonlinear-response approximation [P.A. Rikvold and M. Kolesik, J. Stat. Phys.
100, 377 (2000)] together with kinetic Monte Carlo simulations. Here we
consider interfaces that move under Arrhenius dynamics, which include a
microscopic energy barrier between the allowed Ising/lattice-gas states. Two
different dynamics are studied: the standard one-step dynamic (OSD) [H.C. Kang
and W. Weinberg, J. Chem. Phys. 90, 2824 (1992)] and the two-step
transition-dynamics approximation (TDA) [T. Ala-Nissila, J. Kjoll, and S.C.
Ying, Phys. Rev. B 46, 846 (1992)]. In the OSD the effects of the applied force
and the interaction energies in the model factorize in the transition rates (a
soft dynamic), while in the TDA such factorization is not possible (a hard
dynamic). In full agreement with previous general theoretical results we find
that the local interface width under the TDA increases dramatically with the
applied force. In contrast, the interface structure with the OSD is only weakly
influenced by the force, in qualitative agreement with the theoretical
expectations. Results are also obtained for the force-dependence and anisotropy
of the interface velocity, which also show differences in good agreement with
the theoretical expectations for the differences between soft and hard
dynamics. Our results confirm that different stochastic interface dynamics that
all obey detailed balance and the same conservation laws nevertheless can lead
to radically different interface responses to an applied force.Comment: 18 pages RevTex. Minor revisions. Phys. Rev. B, in pres
Reentrant Behavior of the Spinodal Curve in a Nonequilibrium Ferromagnet
The metastable behavior of a kinetic Ising--like ferromagnetic model system
in which a generic type of microscopic disorder induces nonequilibrium steady
states is studied by computer simulation and a mean--field approach. We pay
attention, in particular, to the spinodal curve or intrinsic coercive field
that separates the metastable region from the unstable one. We find that, under
strong nonequilibrium conditions, this exhibits reentrant behavior as a
function of temperature. That is, metastability does not happen in this regime
for both low and high temperatures, but instead emerges for intermediate
temperature, as a consequence of the non-linear interplay between thermal and
nonequilibrium fluctuations. We argue that this behavior, which is in contrast
with equilibrium phenomenology and could occur in actual impure specimens,
might be related to the presence of an effective multiplicative noise in the
system.Comment: 7 pages, 4 figures; Final version to appear in Phys. Rev. E; Section
V has been revise
Soft versus Hard Dynamics for Field-driven Solid-on-Solid Interfaces
Analytical arguments and dynamic Monte Carlo simulations show that the
microstructure of field-driven Solid-on-Solid interfaces depends strongly on
the dynamics. For nonconservative dynamics with transition rates that factorize
into parts dependent only on the changes in interaction energy and field
energy, respectively (soft dynamics), the intrinsic interface width is
field-independent. For non-factorizing rates, such as the standard Glauber and
Metropolis algorithms (hard dynamics), it increases with the field.
Consequences for the interface velocity and its anisotropy are discussed.Comment: 9 pages LaTex with imbedded .eps figs. Minor revision
Generation and control of extreme-blue shifted continuum peaks in optical Kerr media
We demonstrate tunable, extremely blueshifted continuum in \u3bb=1.055 \u3bcm ultrashort laser pulse filamentation in silica. Close to threshold, the continuum appears as a single, isolated blue peak. The spectral position of the two supercontinuum components can be tuned and a regime with encompassing fundamental and second harmonic is possible to achieve. At higher energies, the continuum expands in bandwidth starting from the blue peak. The spectral dynamics and tunability are explained in terms of X-wave generation and intrafilament pulse splitting which may be controlled by modifying the input pulse focusing conditions
- …