5,217 research outputs found

    Open and Unoriented Strings from Topological Membrane - I. Prolegomena

    Get PDF
    We study open and unoriented strings in a Topological Membrane (TM) theory through orbifolds of the bulk 3D space. This is achieved by gauging discrete symmetries of the theory. Open and unoriented strings can be obtained from all possible realizations of CC, PP and TT symmetries. The important role of CC symmetry to distinguish between Dirichlet and Neumman boundary conditions is discussed in detail.Comment: 2+43 pages, 25 figures. Major changes, mostly in subsection 4.5 and References adde

    Two-Stream Instability of Counter-Rotating Galaxies

    Get PDF
    The present study of the two-stream instability in stellar disks with counter-rotating components of stars and/or gas is stimulated by recently discovered counter-rotating spiral and S0 galaxies. Strong linear two-stream instability of tightly-wrapped spiral waves is found for one and two-armed waves with the pattern angular speed of the unstable waves always intermediate between the angular speed of the co-rotating matter (+Ω+\Omega) and that of the counter-rotating matter (−Ω-\Omega). The instability arises from the interaction of positive and negative energy modes in the co- and counter-rotating components. The unstable waves are in general convective - they move in radius and radial wavenumber space - with the result that amplification of the advected wave is more important than the local growth rate. For a galaxy of co-rotating stars and counter-rotating stars of mass-fraction ξ∗<12\xi_* < {1\over 2}, or of counter-rotating gas of mass-fraction ξg<12\xi_g < {1\over 2}, the largest amplification is usually for the one-armed leading waves (with respect to the co-rotating stars). For the case of both counter-rotating stars and gas, the largest amplifications are for ξ∗+ξg≈12\xi_*+\xi_g \approx {1\over 2}, also for one-armed leading waves. The two-armed trailing waves usually have smaller amplifications. The growth rates and amplifications all decrease as the velocity spreads of the stars and/or gas increase. It is suggested that the spiral waves can provide an effective viscosity for the gas causing its accretion.Comment: 14 pages, submitted to ApJ. One table and 17 figures can be obtained by sending address to R. Lovelace at [email protected]

    Free energy and torque for superconductors with different anisotropies of H_{c2} and lambda

    Full text link
    The free energy is evaluated for a uniaxial superconductor with the anisotropy of the upper critical field, gamma_H = H_{c2,ab}/H_{c2,c}, different from the anisotropy of the penetration depth gamma_{lambda} = lambda_c/lambda_{ab}. With increasing difference between gamma_H and gamma_{lambda}, the equilibrium orientation of the crystal relative to the applied field may shift from theta = pi/2 (theta is the angle between the field and the c axis) to lower angles and reach theta = 0 for large enough gamma_H. These effects are expected to take place in MgB_2.Comment: 4 pages, 3 fig

    Non-linear bigravity and cosmic acceleration

    Full text link
    We explore the cosmological solutions of classes of non-linear bigravity theories. These theories are defined by effective four-dimensional Lagrangians describing the coupled dynamics of two metric tensors, and containing, in the linearized limit, both a massless graviton and an ultralight one. We focus on two paradigmatic cases: the case where the coupling between the two metrics is given by a Pauli-Fierz-type mass potential, and the case where this coupling derives from five-dimensional brane constructions. We find that cosmological evolutions in bigravity theories can be described in terms of the dynamics of two ``relativistic particles'', moving in a curved Lorenzian space, and connected by some type of nonlinear ``spring''. Classes of bigravity cosmological evolutions exhibit a ``locking'' mechanism under which the two metrics ultimately stabilize in a bi-de-Sitter configuration, with relative (constant) expansion rates. In the absence of matter, we find that a generic feature of bigravity cosmologies is to exhibit a period of cosmic acceleration. This leads us to propose bigravity as a source of a new type of dark energy (``tensor quintessence''), exhibiting specific anisotropic features. Bigravity could also have been the source of primordial inflation.Comment: 55 pages, 4 figures, references and comments added, final version published in Phys. Rev.

    Primordial Black Hole: Mass and Angular Momentum Evolution

    Full text link
    The evolution of the primordial low mass black hole (PBH) in hot universe is considered. Increase of mass and decrease of PBH spin due to the accretion of radiation dominated matter are estimated with using of results of numerical simulation of PBH formation and approximate relations for accretion to a rotating black hole.Comment: Gravitation and Cosmology, accepted, 3 pages, Talk presented at the russian summer school-seminar "Modern theoretical problems of gravitation and cosmology" (GRACOS-2007), September 9-16, 2007, Kazan-Yalchik, Russi
    • …
    corecore