9 research outputs found

    Dengue Virus Infection-Enhancing Activity in Serum Samples with Neutralizing Activity as Determined by Using FcγR-Expressing Cells

    Get PDF
    Dengue has become a major international public health concern in recent decades. There are four dengue virus serotypes. Recovery from infection with one serotype confers life-long protection to the homologous serotype but only partial protection to subsequent infection with other serotypes. Secondary infection with a serotype different from that in primary infection increases the risk of development of severe complications. Antibodies may play two competing roles during infection: virus neutralization that leads to protection and recovery, or infection-enhancement that may cause severe complications. Progress in vaccine development has been hampered by limited understanding on protective immunity against dengue virus infection. We report the neutralization activity and infection-enhancement activity in individuals with dengue in Malaysia. We show that infection-enhancement activity is present when neutralizing activity is absent or low, and cross-reactive neutralizing activity may be hampered by infection-enhancing activity. Conventional assays for titration of neutralizing antibody do not consider infection-enhancement activity. We used an alternative assay that determines the sum of neutralizing and infection-enhancement activity in sera from dengue patients. In addition to providing insights into antibody responses during infection, the alternative assay provides a new platform for the study of immune responses to vaccine

    RNA Interference Mediated Inhibition of Dengue Virus Multiplication and Entry in HepG2 Cells

    Get PDF
    Background: Dengue virus-host cell interaction initiates when the virus binds to the attachment receptors followed by endocytic internalization of the virus particle. Successful entry into the cell is necessary for infection initiation. Currently, there is no protective vaccine or antiviral treatment for dengue infection. Targeting the viral entry pathway has become an attractive therapeutic strategy to block infection. This study aimed to investigate the effect of silencing the GRP78 and clathrin-mediated endocytosis on dengue virus entry and multiplication into HepG2 cells. Methodology/Principal Findings: HepG2 cells were transfected using specific siRNAs to silence the cellular surface receptor (GRP78) and clathrin-mediated endocytosis pathway. Gene expression analysis showed a marked down-regulation of the targeted genes (87.2%, 90.3%, and 87.8 % for GRP78, CLTC, and DNM2 respectively) in transfected HepG2 cells when measured by RT-qPCR. Intracellular and extracellular viral RNA loads were quantified by RT-qPCR to investigate the effect of silencing the attachment receptor and clathrin-mediated endocytosis on dengue virus entry. Silenced cells showed a significant reduction of intracellular (92.4%) and extracellular viral RNA load (71.4%) compared to non-silenced cells. Flow cytometry analysis showed a marked reduction of infected cells (89.7%) in silenced HepG2 cells compared to non-silenced cells. Furthermore, the ability to generate infectious virions using the plaque assay was reduced 1.07 log in silenced HepG2 cells
    corecore