372 research outputs found

    A New Perspective on Electroweak Strings

    Full text link
    The vortex solution (Z-string) of the electroweak interactions can be interpreted as the 2-dimensional sphaleron at the top of a non-contractible sphere. The same holds for another type of solution, the W-string.Comment: 13 pages, Latex, NIKHEF-H/94-02 (February 2, 1994), 1 figure available by fax or mail (send request to [email protected]

    Entropic-gravity derivation of MOND

    Full text link
    A heuristic entropic-gravity derivation has previously been given of the gravitational two-body force of modified Newtonian dynamics (MOND). Here, it is shown that also another characteristic of MOND can be recovered, namely, the external field effect (implying a violation of the Strong Equivalence Principle). In fact, the derivation gives precisely the modified Poisson equation which Bekenstein and Milgrom proposed as a consistent nonrelativistic theory of MOND.Comment: 6 pages; v5: published versio

    Entropic gravity, minimum temperature, and modified Newtonian dynamics

    Full text link
    Verlinde's heuristic argument for the interpretation of the standard Newtonian gravitational force as an entropic force is generalized by the introduction of a minimum temperature (or maximum wave length) for the microscopic degrees of freedom on the holographic screen. With the simplest possible setup, the resulting gravitational acceleration felt by a test mass m from a point mass M at a distance R is found to be of the form of the modified Newtonian dynamics (MOND) as suggested by Milgrom. The corresponding MOND-type acceleration constant is proportional to the minimum temperature, which can be interpreted as the Unruh temperature of an emerging de-Sitter space. This provides a possible explanation of the connection between local MOND-type two-body systems and cosmology.Comment: 12 pages, v6: published versio

    Osmotic pressure of matter and vacuum energy

    Full text link
    The walls of the box which contains matter represent a membrane that allows the relativistic quantum vacuum to pass but not matter. That is why the pressure of matter in the box may be considered as the analog of the osmotic pressure. However, we demonstrate that the osmotic pressure of matter is modified due to interaction of matter with vacuum. This interaction induces the nonzero negative vacuum pressure inside the box, as a result the measured osmotic pressure becomes smaller than the matter pressure. As distinct from the Casimir effect, this induced vacuum pressure is the bulk effect and does not depend on the size of the box. This effect dominates in the thermodynamic limit of the infinite volume of the box. Analog of this effect has been observed in the dilute solution of 3He in liquid 4He, where the superfluid 4He plays the role of the non-relativistic quantum vacuum, and 3He atoms play the role of matter.Comment: 5 pages, 1 figure, JETP Lett. style, version accepted in JETP Letter

    Towards a solution of the cosmological constant problem

    Full text link
    The standard model of elementary particle physics and the theory of general relativity can be extended by the introduction of a vacuum variable which is responsible for the near vanishing of the present cosmological constant (vacuum energy density). The explicit realization of this vacuum variable can be via a three-form gauge field, an aether-type velocity field, or any other field appropriate for the description of the equilibrium state corresponding to the Lorentz-invariant quantum vacuum. The extended theory has, without fine-tuning, a Minkowski-type solution of the field equations with spacetime-independent fields and provides, therefore, a possible solution of the main cosmological constant problem.Comment: 7 pages; v6: published versio

    Newtonian gravity as an entropic force: Towards a derivation of G

    Full text link
    It has been suggested that the Newtonian gravitational force may emerge as an entropic force from a holographic microscopic theory. In this framework, the possibility is reconsidered that Newton's gravitational coupling constant G can be derived from the fundamental constants of the underlying microscopic theory.Comment: 10 pages. v6: published versio

    Gluonic vacuum, q-theory, and the cosmological constant

    Full text link
    In previous work, q-theory was introduced to describe the gravitating macroscopic behavior of a conserved microscopic variable q. In this article, the gluon condensate of quantum chromodynamics is considered in terms of q-theory. The remnant vacuum energy density (i.e., cosmological constant) of an expanding universe is estimated as K_{QCD}^3 / E_{Planck}^2, with string tension K_{QCD} \approx (10^2 MeV)^2 and gravitational scale E_{Planck} \approx 10^{19} GeV. The only input for this estimate is general relativity, quantum chromodynamics, and the Hubble expansion of the present Universe.Comment: 20 pages; v6: published versio

    Spontaneous Breaking of Lorentz Invariance

    Get PDF
    We describe how a stable effective theory in which particles of the same fermion number attract may spontaneously break Lorentz invariance by giving non-zero fermion number density to the vacuum (and therefore dynamically generating a chemical potential term). This mecanism yields a finite vacuum expectation value whichweconsiderinthecontextofproposedmodelsthatrequiresuchabreakingofLorentzinvarianceinordertoyieldcompositedegreesoffreedomthatactapproximatelylikegaugebosons.Wealsomakegeneralremarksabouthowthebackgroundsourceprovidedby which we consider in the context of proposed models that require such a breaking of Lorentz invariance in order to yield composite degrees of freedom that act approximately like gauge bosons. We also make general remarks about how the background source provided by could relate to work on signals of Lorentz violation in electrodynamics.Comment: revtex4, 11 pages, 5 figures; v2:references added; v3:more references added, typos fixed, some points in sect. IV clarified; v4:even more references added, discussion in sect. V extended; v5:replaced to match published version (minor corrections of form
    • …
    corecore